SINGLE STAGE EXPERIMENTAL EVALUATION OF HIGH MACH NUMBER COMPRESSOR ROTOR BLADING PART 4 - PERFORMANCE OF ROTOR 2D by K.W. Krabacher and J.P. Gostelow prepared for ### NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT NAS3-7617 FLIGHT PROPULSION DIVISION GENERAL ELECTRIC LYNN, MASSACHUSETTS/CINCINNATI, OHIO ### NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA: - A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or - B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report. As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor. Requests for copies of this report should be referred to National Aeronautics and Space Administration Office of Scientific and Technical Information Attention: AFSS-A Washington, D.C. 20546 ### SINGLE STAGE EXPERIMENTAL EVALUATION OF HIGH MACH NUMBER COMPRESSOR ROTOR BLADING PART 4 - PERFORMANCE OF ROTOR 2D bу K.W. Krabacher and J.P. Gostelow prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . October 6, 1967 CONTRACT NO. NAS3-7617 Technical Management NASA Lewis Research Center Cleveland, Ohio James J. Watt, Project Manager Everett E. Bailey, Research Advisor ADVANCED TECHNOLOGY AND DEMONSTRATOR PROGRAMS DEPARTMENT FLIGHT PROPULSION DIVISION GENERAL ELECTRIC LYNN, MASSACHUSETTS/CINCINNATI, OHIO ### SINGLE STAGE EXPERIMENTAL EVALUATION OF HIGH MACH NUMBER COMPRESSOR ROTOR BLADING PART 4 - PERFORMANCE OF ROTOR 2D by K. W. Krabacher and J. P. Gostelow ### ABSTRACT A 1400 foot per second tip speed rotor with a 0.5 hub-tip radius ratio and double-circular-arc blade sections, designed to deliver a total pressure ratio of 1.76 and a rotor adiabatic efficiency of 0.837 at a flow of 215.49 lbs/sec, was tested with uniform inlet flow. For a point at design speed, judged to have adequate stall margin for engine operation, a rotor total pressure ratio of 1.677 and an adiabatic efficiency of 0.854 at a flow of 226.0 lbs/sec were actually achieved. ### SUMMARY A 1400 foot per second tip speed rotor, designed to have a diffusion factor of 0.45 at the tip, was tested with uniform inlet flow. A double-circulararc blade element design was used for the entire blade height. The hub-tip radius ratio at rotor inlet is 0.50. Neither inlet guide vanes nor a stator row were employed. The rotor was designed to deliver a total-pressure ratio of 1.76 and a rotor adiabatic efficiency of 0.837 at a flow of 215.49 lbs/sec. For a point at design speed, judged to have adequate stall margin for engine operation, a rotor total pressure ratio of 1.677 and a rotor adiabatic efficiency of 0.854 at a flow of 226.0 lbs/sec were actually achieved. Peak rotor adiabatic efficiencies of 0.950, 0.958, 0.917, 0.875, and 0.814 were obtained at 50, 70, 90, 100 and 110 percent of design speed, respectively. Blade element data were obtained from measurements over a range of speeds from 50% to 110% design speed. Results of these blade element measurements were used to show the variation of deviation angle, diffusion factor and loss coefficient as a function of incidence angle for five radial immersions. The rotor was also stalled at these speeds and overall performance data were obtained while in stall. The stall type was rotating stall at all speeds. ### INTRODUCTION In the early 1950's a test program was initiated at the NACA Lewis Laboratory to provide blade element data for double-circular-arc airfoil sections to be applied to the design of transonic rotors (ref. 1). Available experimental and analytical data indicated that such airfoils produced a good chordwise loading and could be used in transonic compressors with resulting high efficiencies at relative Mach numbers up to 1.2 (ref. 2). During the last fifteen years the development of axial-flow compressors for todays' aircraft engines has resulted in high blade speeds and stage loadings. This leads to higher relative Mach numbers and can cause severe efficiency penalties due to the presence of shocks. It is the purpose of the current experimental program to determine the performance potential of such rotors and to obtain data that will aid in the selection of optimum blade sections. A new type of blade shape has been employed in general for this test series. The camber line consists of two circular arcs that are mutually tangent at the point where they join. The front arc is identified as the supersonic arc, and the rear arc is identified as the subsonic arc. The term, camber ratio, refers to the ratio of the camber of the supersonic arc to the total camber. Blade elements developed in this way are called multiple-circular-arc elements; the double-circular-arc airfoil is a particular case in which the supersonic arc and the subsonic arc have the same curvature. Rotor 2D, the third of four medium-aspect-ratio rotors, has such a double-circular-arc section along the entire span. The blade shape thus represents a link between the present series of tests and the earlier NACA series. The double-circular-arc tip element has a camber ratio of 0.65 and a diffusion factor of 0.45. Details of the design of this rotor and the other rotors to be evaluated are given in reference 3. This report presents overall performance and blade-element results of tests on Rotor 2D with a uniform inlet flow. ### SYMBOLS The following symbols are used in this report: A flow area, in² A area represented by each discharge rake element. This is the area of an annulus bounded either by radii midway between those of two adjacent elements or by the hub or casing, in a distance along chord line to position where maximum perpendicular displacement between camber line and chord line occurs, in C_h enthalpy-equivalent static-pressure-rise coefficient, $$c_{h} = \frac{2gJc_{p}t_{1} \left[\left(\frac{p_{2}}{p_{1}} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right] - (u_{2}^{2} - u_{1}^{2})}{v_{1}^{2}}$$ C static-pressure-rise coefficient, $$c_p = \frac{p_2 - p_1}{p_1' - p_1}$$ c blade-chord length, in c specific heat at constant pressure, Btu/lb-°R D diffusion factor, $$D = 1 - \frac{V_{1}'}{V_{1}'} + \frac{r_{2}V_{\theta 2} - r_{1}V_{\theta 1}}{2r_{0}V_{1}'}$$ g acceleration due to gravity, 32.174 ft/sec² i incidence angle, difference between air angle and camber line angle at leading edge in cascade projection, deg i unit vector in direction of intersection of axisymmetric stream surface and blade mean surface. J mechanical equivalent of heat, 778.161 ft-lb/Btu M Mach number P total or stagnation pressure, psia P_{in} compressor inlet average total pressure, psia ? arithmetic average total pressure at j immersion, psia p static or stream pressure, psia r radius, in mean radius, average of streamline leading-edge and trailing-edge radii, in T total or stagnation temperature, °R T_{i} arithmetic average total temperature at j immersion, ${}^{\circ}R$ t static or stream temperature, °R t blade thickness, in | | ^t e | blade edge thickness, in | |-------------|-----------------|--| | | t _m | blade maximum thickness, in | | • | U | rotor speed, ft/sec | | | V | air velocity, ft/sec | | | V _{zj} | average axial velocity at j immersion, ft/sec | | | w . | weight flow, lb/sec | | | Z , | displacement along compressor axis, in | | | β | air angle, angle whose tangent is the ratio of tangential to axial velocity, deg | | <i>.</i> '. | Υ | ratio of specific heats | | | γ° | blade-chord angle, angle in cascade projection between blade chord and axial direction, deg | | • . • | ć | ratio: $\frac{\text{total pressure}}{\text{standard pressure}}$, $\frac{\text{psia}}{14.696 \text{ psia}}$ | | | δ° | deviation angle, difference between air angle and camber line angle at trailing edge in cascade projection, deg | | | € • | meridional angle, angle between tangent to streamline projected on meridional plane and axial direction, deg | | | θ | ratio: $\frac{\text{total temperature}}{\text{standard temperature}}$, $\frac{^{\circ}R}{518.688^{\circ}R}$ | | | ₉ • | angular displacement about compressor axis, deg | | | r) | efficiency | | | K ° | angle between cylindrical projection of i_{κ} and axial direction, deg | | | ρ | static or stream density, lb-sec ² /ft ⁴ | | | Ø | solidity, ratio of chord to spacing | | | φ | camber angle, difference between angles in cascade projection of tangents to camber line at extremes of camber line arc, deg | | | ψ | stream function; $\psi_h = 0$, $\psi_c = 1$ | ``` ū total-pressure-loss coefficient Subscripts: point on camber line where maximum camber line rise occurs ad adiabatic an annulus value arithmetic average at any plane avg tip or casing at any plane c d downstream equivalent two-dimensional cascade e hub at any plane h immersion j meridional direction polytropic suction surface t tip at rotor leading-edge plane total when referring to blade element upstream with respect to axial displacement with respect to meridional displacement leading edge 2 trailing edge 0.05, 0.95, 1.51, 1.57 instrumentation plane designations (fig. 5) Superscripts: critical flow condition ``` relative to rotor ### APPARATUS AND PROCEDURE ### Test Rotor The
design of the rotor used in this test investigation is presented in reference 3 in which it is identified as Rotor 2D. The rotor was designed for a corrected weight flow per unit frontal area of 29.66 lbs/sec per square foot. With the selected rotor tip diameter of 36.5 inches and the hub-tip radius ratio of 0.50, the design corrected weight flow is 215.49 lbs/sec. The selection of a rotor tip solidity of 1.3, a diffusion factor of 0.45, zero inlet swirl, a rotor tip speed of 1400 ft/sec, and an axial velocity ratio of 0.91 permitted the calculation of the change in angular momentum across the rotor at the rotor tip. This change in angular momentum, with a suitable rotor total-pressure-loss coefficient derived from the NASA method of references 4 and 5, resulted in a design rotor total-pressure ratio of 1.76. The design total-pressure ratio was held constant radially. Because the loss correlation resulted in radially varying losses, a radial variation of the change in angular momentum was used in the design vector diagram calculations. Double-circular-arc blade sections were used in the cascade projection* over the entire radial height of the blade. The same double-circular-arc blade sections were used for all Rotors 2 from the hub outward to approximately the 60% span location. However, for this rotor the portion of the blade outboard from the shroud also had a double-circular-arc section, resulting in a camber ratio of 0.65 for the tip element. Tabulations of the blade design data appear in table 1. A view of a portion of the assembled rotor appears in figure l(a) and a close up of the tip section is presented in figure l(b). In order to assess the quality of the blading, after manufacture, the blading was inspected using the contour layouts from six of the twelve manufacturing sections for six blades selected at random. A meridional view of the rotor appears in figure 2 and the inspected sections are identified by asterisks. At each manufacturing section the average of the six blades was obtained and was compared with the design intent. The results of the comparisons of the average blade sections with design intent appear in figures 3(a) through 3(f). These results indicate that most of the sections were more closed than the design intent in the trailing portion of the blade. Further investigation revealed that there was a manufacturing discrepency in the part-span shroud. The error in the shroud permitted the blade to open up more than design intent and partially compensated for the discrepency in the blade-trailing edge. Final conclusions ^{*}As described in reference 3, the cascade projection is obtained by viewing the intersection of a blade and an axisymmetric stream surface in the radial direction. The justification for the use of this projection is given in reference 6. on the blade inspections are that generally the sections from the shroud outward were open about 0.3° and those from the shroud inward were closed about 0.3° from design intent. The average running tip clearance at 100% speed was 0.042 inches. ### Test Facility and Instrumentation Performance tests of this rotor were made in General Electric's House Compressor Test Facility, in Lynn, Massachusetts. The general aspects of the test set-up are shown in figure 4 and described in detail in reference 7. The majority of the instrumentation was identical with that used in reference 7 and the locations are illustrated in figures 5 and 6. The difference in hub contour between Rotor 1 and Rotors 2 resulted in different radii for all of the instrumentation except the inlet pitot-static and casing boundary layer rakes. Photographs of fixed instrumentation used for Rotor 2D appear in figure 7. Photographs of the traverse probes and the hot-wire probes are presented in figure 8. ### General Test Procedure The following test sequence was followed in general during the testing of this rotor. With the throttle valve set to deliver approximately the design total-pressure ratio at 100% corrected speed, data were recorded from fixed instrumentation at 50%, 70%, 90%, 100% and 110% corrected speeds. (When only fixed instrumentation measurements are taken, the data readings are termed green readings). The test rotor was returned to 50% corrected speed and the throttle valve closed until the limit of stall-free operation was achieved. With the throttle re-set so that the vehicle operated as close to stall as feasible, blade-element data and a green reading were recorded. This procedure was repeated at 70, 90, 100, and 110 percent corrected speed to establish the limit of stall-free operation and to obtain blade element and green reading data early in the test. Blade element and green reading data were then recorded over the remaining range of stall-free operation up to the maximum facility flow capacity for 100%, 90% and 110% design speed. Difficulties were encountered in determining the total-pressure ratio for green reading data at 50% and 70% corrected speeds. The level of the absolute total pressure at the rotor discharge was below the high accuracy range of the transducers for these conditions. The data recording system was modified for these speeds to record the discharge total pressures as differential pressures with the manifolded inlet total pressure as the reference. This method resulted in more reliable green reading data at 50% and 70% design speeds. Blade element and green reading data were recorded over the remaining portion of the stall-free operating range up to the maximum facility flow capacity for 50 and 70 percent corrected speed. Prior to the conclusion of the test the throttle valve was closed until the rotor was operating in stall where green reading and hot-wire data were recorded at each speed. ### Testing in the Stall-Free Region For all speeds the throttle positions at which data were recorded in the stall-free region of operation were generally selected to permit ease in defining the speed line and to document the peak efficiency. At low speeds this led to a relatively even spacing whereas at higher speeds the throttle positions were concentrated in the higher pressure ratio region where incidence variations occur. At the rotor inlet traverse location, the static pressure wedge was set to zero flow direction and the cobra probe was allowed to seek its nulled position. At the rotor exit traverse location the static pressure wedge was manually rotated to the angle orientation established by the nulled position of the cobra probe; since stationary vane rows and struts were relatively far removed from this plane, circumferential variations of angle were presumed to be sufficiently small not to affect the pressure read by the wedge static probe. Probe immersion indicators and the probe aerodynamic parameters were connected to conventional X-Y plotting equipment. In general, continuous traverses were only recorded for the rotor exit flow angle; these were used to give an indication of the radial extent of the part span shroud wake. Recording of data from the traversing probes at the standard immersions was achieved by means of a digitized read-out on punched paper tape, as was also the case for the recording of data from fixed instrumentation. ### Testing in the Stalled Region Rotating stalls were encountered, on closing the throttle valve, at all speeds. The rotor was stalled twice at each speed, the limit of stall-free operation being established by closing the throttle valve slowly until distinct changes in the stress levels and performance were noted. For the first stall at each speed the three traverse hot-wire anemometer probes were immersed at the 10%, 50% and 70% immersions. In this way a knowledge of the radial extent of the rotating stall cells was gained. For the second stall the hot-wire anemometer probes were all set at the 10% immersion so that information was obtained from which the speed and number of rotating stall cells could be deduced. A green reading was recorded simultaneously with the hot-wire data with the rotor in stall. ### RESULTS AND DISCUSSION ### Overall Performance The compressor map of the test rotor is shown in figure 9. The inlet total-temperature level was established as the arithmetic average of 24 inlet temperatures measured in the low velocity region at the facility inlet screen (fig. 4). The rotor exit total-temperature and total-pressure ratio were established on the basis of fixed probe readings by a mass weighting routine, as follows. At each immersion, measurements from all circumferential locations were arithmetically averaged. The static pressure was assumed to vary linearly from hub to casing based on the measured average hub and casing values. With static pressure, total pressure, and total temperature known, static density and absolute velocity were computed at each immersion. The tangential velocity was obtained from the total-temperature rise and the Euler turbomachinery equation, and this, together with the absolute velocity and the design meridional streamline angle, gave the axial velocity. The discharge total-temperature and total-pressure ratio were then obtained from the following equations: $$T = \frac{\sum_{j=1}^{5} T_{j} \rho_{j} V_{zj}^{A}_{j}}{\sum_{j=1}^{5} \rho_{j} V_{zj}^{A}_{j}}, \qquad (1)$$ $$\frac{P}{P_{in}} = \left\{ \sum_{j=1}^{5} \left[\left(\frac{P_{j}}{P_{in}} \right)^{\frac{\gamma-1}{\gamma}-1} \right] \rho_{j} V_{zj}^{A}_{j} + 1 \right\}$$ These quantities were used with the real gas properties of dry air to compute the rotor adiabatic and polytropic efficiencies. The corrected weight flow was obtained from the calibrated venturi flow nozzles. For several points close to stall at 50% corrected speed the measurements of flow obtained from the venturi flow nozzles proved unreliable. A similar problem was encountered during the testing of Rotor 1B (ref. 7) and was resolved by establishing a relationship between the integrated flow from the rotor inlet traverse
probe and the nozzle flow. Using this correlation and the integrated flow, the compressor flow was determined for all of the data at 50% corrected speed. In reference 7, the performance at 100% corrected speed was compared with the design point by passing a constant throttle line through the design point and noting the intersection with the 100% corrected speed line. When this procedure is used on the Rotor 2D performance map (fig. 9) the resulting operating condition is too close to stall. For conditions at design speed, judged to have adequate stall margin for engine operation, a rotor total-pressure ratio of 1.677 and a rotor adiabatic efficiency of 0.854 were actually achieved at a flow of 226.0 lbs/sec. The rotor was designed to deliver a total-pressure ratio of 1.76 and a rotor adiabatic efficiency of 0.837 at a flow of 215.49 lbs/sec. Peak rotor adiabatic efficiencies of 0.950, 0.958, 0.917, 0.875, and 0.814, were obtained at 50, 70, 90, 100, and 110 percent of design speed respectively. A completed listing of the overall performance data (green readings) appears in table 2. ### Stall Performance The throttle position representing the limit of stall-free performance of the rotor as the throttle is closed was recorded. With this information and performance data at throttle positions close to the stall throttle position it is possible to extrapolate each speed line on the compressor map to the limit of stall-free operation. The stall line determined in this manner is shown in figure 9. The overall performance measurements, recorded while the rotor was operating with stall present, appear as solid symbols in figure 9. The flow was quite unsteady for these readings leaving the absolute accuracy open to question, but indicating a notable decrease in performance. Samples of the hot-wire anemometer data appear in figure 10. These are copies of Visicorder traces from the three anemometers. In figure 10(a) the anemometers are at immersions of 10%, 50% and 70%. A study of such traces gives an indication of the radial extent of the stall cells. In figure 10(b) all of the anemometers are at 10% immersion. The amplititude of the trace in figure 10(b) at the 111° position is greater than the correct level due to a data recording error. Under ideal conditions the trace in figure 10(a) at the 10% immersion would be identical to the trace in figure 10(b) at the 33° position since both are recorded at the same radial and circumferential location. Examination of these two traces reveals a general similarity but they are not identical because of slight variations in data recording techniques. The number and speed of the rotating stall cells was calculated using the method described in reference 7 on traces similar to figure 10(b). These data and other stall performance information are presented in figure 10(c). ### Blade-Element Performance For presentation of the data from traverse probes located upstream and downstream of the rotor, a method of adjusting the data to obtain conditions at the blade edges was used. Knowing the measured total pressure, total temperature, static pressure and flow angle at each immersion and using the design meridional streamline angle, the meridional Mach number and all velocity components at each measurement plane may be calculated. Application of the condition of constant angular momentum along design streamlines yields the tangential velocity at each blade edge. It is assumed that the shape of each meridional stream tube, between a measurement plane and its adjacent blade edge, remains fixed at the design shape for all data conditions. The meridional Mach number at a measurement plane may then be used to determine the meridional Mach number at the blade edge by use of the relationship shown in figure 11. This method is not strictly correct at the trailing edge where there may be an appreciable swirl velocity together with a change in radius between the edge and the measurement plane. Nevertheless, since the radius changes are not large, the method should be a very good approximation. With the tangential velocities and the meridional Mach numbers at the edges thus obtained, and with measured stagnation conditions assumed to be constant along the design streamlines, the velocities, Mach numbers, and all of their components may be determined at the blade edges. The constant physical quantities used in these computations at the measurement planes and at the edges are given in table 3. In order to check out this procedure and to determine small differences due to calculation technique, design values of total pressure, total temperature, static pressure and flow angle were used in a simple calculation. Treating this information as though it were test data, the calculation routine was used to give design point blade element performance, yielding the data listed in table 4. Some indication of the small differences which can occur is indicated in table 4 by the leading edge and trailing edge check weight flow/nozzle weight flow ratios. The integrated flow at the upstream (plane 0.95) and downstream (plane 1.51) measurement planes is divided by the nozzle flow, which was set equal to the design flow for the check case. Table 5 is included to give a more complete description of the abbreviations used. Complete listings of blade element data are given in table 6 and graphs of some blade element data, plotted as a function of incidence angle, are presented in figure 12. Measurements of discharge stagnation temperature taken from the fixed instrumentation were judged to be more reliable than those from the cobra traversing probes. Efficiency, loss coefficient and loss parameter were therefore processed by separate computation, using fixed instrumentation stagnation temperatures and pressures in conjunction with the inlet relative Mach number obtained from the traverse probe data. The results of this computation are given as an addition in table 6 and loss coefficients obtained in this way are plotted in figure 12. Examination of the blade-element data and the flow angle traverses in the rotor discharge plane revealed that the 50% immersion data were partially immersed in the wake of the part-span shroud. Similar results were observed and illustrated in figure 14 of reference 7 and figure 13 of reference 8. This effect can be seen in some of the unusually high values of loss coefficient for the third radial position on the blade-element data. Generally the influence of the shroud wake on the 50% immersion reading increased when the throttle position was close to stall or approaching maximum facility flow. ### REFERENCES - Lewis, G.W., Jr., Schwenk, F.C., and Serovy, G.K.: Experimental Investigation of a Transonic Axial-Flow-Compressor Rotor With Double-Circular-Arc_Airfoil Blade Sections. I - Design, Over-All Performance and Stall Characteristics. NACA RM E53L21a. April 1954. - Robbins, William H., Glaser, Frederick W.: Investigation of an Axial-Flow-Compressor Rotor With Circular-Arc Blades Operating Up to a Rotor-Inlet Relative Mach Number of 1.22. NACA RM E53D24, July 1953. - 3. Seyler, D.R., and Smith, L.H., Jr.: Single Stage Experimental Evaluation of High Mach Number Compressor Rotor Blading, Part 1 Design of Rotor Blading, NASA CR-54581, April 1, 1967. - 4. Miller, Genevieve R., Lewis, George W., Jr., and Hartmann, Melvin J.: Shock Losses in Transonic Compressor Blade Rows, Journal of Engineering for Power, Trans. ASME, Series A, Vol. 83, July 1961, pp. 235. - 5. Robbins, William H., Jackson, Robert J., and Lieblein, Seymour: Blade-Element Flow in Annular Cascades, Aerodynamic Design of Axial-Flow Compressors, NASA SP-36, Chapt. VII, 1965, pp. 227254. - 6. Smith, L.H., Jr., and Yeh, Hsuan: Sweep and Dihedral Effects in Axial-Flow Turbomachinery, Journal of Basic Engineering, Trans. ASME, Series D., Vol. 85, 1963, pp. 401-416. - 7. Seyler, D.R., and Gostelow, J.P.: Single Stage Experimental Evaluation of High Mach Number Compressor Rotor Blading, Part 2 Performance of Rotor 1B, NASA CR-54582, September 22, 1967. - 8. Gostelow, J.P., and Krabacher, K.W.: Single Stage Experimental Evaluation of High Mach Number Compressor Rotor Blading, Part 3 Performance of Rotor 2E, NASA CR-54583, September 29, 1967. Table 1. - Cascade Projection Data for Rotor 2D Blade Setting. | ψ | $\frac{r_1}{r_t}$ | β1 | i | ~ ¹ | κ's1 ^{-κ'} 1 | tel
ct | |-----|-------------------|----------------|----------|------------------|------------------------|-----------------| | 1.0 | .9963 | 64.65 | 3,29 | 61.36 | 3.30 | .0059 | | .9 | . 9600 | 62.76 | 3.68 | . 59.08 | 3.71 | .0062 | | . 8 | .9228 | 61.74 | 4.10 | 57.64 | 4.11 | .0065 | | . 7 | .8841 | 60.66 | 4.52 | 56.14 | 4.50 | .0069 | | .6 | .8435 | 59.64 | 4.94 | 54.70 | 4.97 | .0072 | | .5 | .8005 | 5 8.5 5 | 5.35 | 53.20 | 5.45 | .0076 | | 4 | .7540 | 57.27 | 5.82 | 51.45 | 5.91 | .0079 | | . 3 | .7046 | 5 6.2 0 | 6.10 | 50.10 | 6.36 | .0083 | | . 2 | .6492 | 55.53 | 6.09 | 49.44 | 6.80 | .0088 | | .1 | .5850 | 56.18 | 5.90 | 50.28 | 7.23 | .0093 | | 0 . | .4995 | 61,18 | 5.70 | 55.48 | 7.56 | .0100 | | | r_2 | 0. | δ° | 1 | 0.1 | t _{e2} | | ψ | $\frac{r_2}{r_t}$ | β'2 | 0 | κ <mark>1</mark> | β <mark>†</mark>
2e | c _t | | 1.0 | .9794 | 54.52 | 3.48 | 51.04 | 53.41 | .0060 | | . 9 | .9485 | 54,13 | . 3.72 | 50.41 | 50.18 | .0063 | | .8 | .9157 | 52,77 | 3.92 | 48.8 5 | 47.77 | .0066 | | . 7 | .8815 | 50,72 | 4.15 | 46.57 | 45.09 | .0070 | | .6 | . 8454 | 47.78 | 4.57 | 43.21 | 41.71 | .0074 | | . 5 | .8070 | 44.05 | 5.05 | 39.00 | 37.76 | .0078 | | . 4 | .7675 | 39.12 | 5.73 | 33.39 | 32,78 | .0082 | | . 3 | .7257 | 33.36 | 6.71 | 26.65 | 27.15 | .0086 | | . 2 | .6824 | 26.32 | 8.21 | 18.11 | 19.68 | .0091 | | . 1 | .6378 | 18,34 | 10.70 | 7.64 | 8,52 | . 0095 | | 0 | .5912 | 10.18 | 16.82 | -6.64 | -19.05 | .0100 | | ψ | t _m | γ° | <u>a</u> | σ | φt | | | Ψ | c
t | , | ct | | 't | | | 1.0 | .0350 | 56.19 | .500 | 1,3063 | 10.33 |
| | . 9 | .0387 | 54.74 | .500 | 1.3523 | 8.67 | | | . 8 | .0426 | 53.24 | . 500 | 1.4038 | 8.79 | | | . 7 | .0466 | 51.35 | . 500 | 1,4618 | 9.57 | | | . 6 | .0510 | 48.95 | . 500 | 1.5281 | 11.49 | | | . 5 | .0556 | 46.10 | . 500 | 1.6055 | 14.20 | | | . 4 | .0604 | 42.42 | . 500 | 1.6963 | 18.06 | | | .3 | .0655 | 38.37 | . 500 | 1.8044 | 23.45 | | | . 2 | .0708 | 33.77 | . 500 | 1.9382 | 31.33 | | | . 1 | .0770 | 28,96 | .500 | 2,1106 | 42.64 | | | 0 | .0850 | 24.42 | . 500 | 2,3663 | 62.12 | | Table 2. - Overall Performance based on Fixed Instrumentation | Rdg.* | Total
press.
ratio | Rotor
adiab.
eff. | Corrected
weight
flow | Rotor speed,
percent
design | Throttle valve setting | Operating mode | **Pressure
measurement
system | |--------------------------|--------------------------|-------------------------|-----------------------------|-----------------------------------|------------------------|--------------------------|-------------------------------------| | | | | lb/sec | | | | | | | | | | | | 6. 11 6 | 41 | | 1 | 1.153 | . 9640 | 124.35 | 50.02 | 11.7 | Stall free
Stall free | Abs.
Abs. | | 2 | 1.322 | . 9545 | 174.63 | 70.03 | 11.7
11.7 | Stall free
Stall free | Abs. | | 3 | 1,620 | .9089 | 212,70 | 90.05 | 11.7 | Stall free | Abs. | | 4 | 1.785 | .8697 | 224.69
233.60 | 100.10
110.06 | 13.0 | Stall free | Abs. | | 5
6m | 1.837
1.174 | .8063
.9055 | 99.4 | 50.03 | 5.0 | Stall free | Abs. | | 6 T
7 T | 1.174 | . 8950 | 149.26 | 70.05 | 6.5 | Stall free | Abs. | | 71
8T | 1.671 | .8910 | 201.26 | 90.05 | 9.4 | Stall free | Abs. | | 9T | 1.824 | .8657 | 223.56 | 100.06 | 10.9 | Stall free | Abs. | | 10T | 1.943 | .8118 | 232.99 | 110.05 | 11.5 | Stall free | Abs. | | 111 | 1.369 | .7775 | 225.67 | 99.98 | 50.0 | Stall free | Abs. | | 12T | 1.566 | .8275 | 226.40 | 100.03 | 15.0 | Stall free | Abs. | | 13 T | 1.612 | .8313 | 226.08 | 99.98 | 14.0 | Stall free | Abs. | | 14 T | 1.685 | .8551 | 225.76 | 100.02 | 13.0 | Stall free | Abs. | | 15 T | 1.738 | .8725 | 225.91 | 99.90 | 12.3 | Stall free | Abs. | | 16T | 1.782 | .8715 | 225.24 | 100.06 | 11.7 | Stall free | Abs. | | 17T | 1.805 | .8815 | 224.31 | 99.94 | 11.3 | Stall free | Abs. | | 18T | 1.318 | .8318 | 215.50 | 90.02 | 50.0 | Stall free | Abs. | | 19T | 1.509 | . 8980 | 216.05 | 90.03 | 14.0 | Stall free | Abs. | | 20T | 1.556 | . 8996 | 214.88 | 90.04 | 13.0 | Stall free | Abs. | | 21T | 1.115 | .9341 | 144.0 | 50.05 | 50.0 | Stall free | Diff. | | 22T | 1.124 | . 9504 | 137.5 | 49.96 | 25.0 | Stall free | Diff. | | 23T | 1.140 | . 9445 | 127.2 | 50.02 | 15.0 | Stall free | Diff. | | 24 T | 1.149 | .9221 | 121.6 | 50.01 | 11.7 | Stall free | Diff. | | 25T | 1.157 | .9253 | 114.8 | 50.04 | 9.0 | Stall free | Diff. | | 26 T | 1.164 | .9138 | 107.4 | 50.01 | 7.0 | Stall free | Diff. | | 27 T | 1.215 | .9006 | 187.52 | 70.06 | 50.0 | Stall free | Diff. | | 28T | 1.291 | . 9471 | 179.75 | 69.97 | 15.0 | Stall free | Diff. | | 29T | 1.313 | . 9683 | 174.55 | 69.96 | 12.3 | Stall free | Diff. | | 30T | 1.319 | .9494 | 172.76 | 70.02 | 11.7 | Stall free | Diff. | | 31T | 1.346 | . 9407 | 163.61 | 70.04 | 9.0 | Stall free | Diff. | | 32T | 1.355 | . 9204 | 154.06 | 69.91 | 7.5 | Stall free | Diff. | | 33T | 1.621 | .9180 | 212.89 | 90.02 | 11.0 | Stall free | Abs. | | 34T | 1.646 | . 9174 | 209.41 | 90.00 | 11.0 | Stall free | Abs. | | 35T | 1.659 | .9156 | 205.74 | 89.97 | 10.3 | Stall free | Abs. | | 36T | 1.440 | . 7455 | 233.90 | 110.01 | 50.0 | Stall free | Abs. | | 37 T | 1.748 | .7944 | 233.91 | 110.14 | 14.0 | Stall free | Abs. | | 38T | 1,829 | . 8099 | 233.84 | 109.99 | 13.0 | Stall free | Abs. | | 39T | 1.889 | .8138 | 233.13 | 110.03 | 12.3 | Stall free | Abs. | | 40T | 1.908 | . 8128 | 233.00 | 109.95 | 12.0 | Stall free | Abs. | | 41T | 1.932 | . 8131 | 232.06 | 110.04 | 11.7
11.7 | Stall free
Stall free | Abs.
Abs. | | 42
43 | 1.934 | .8136
.8711 | 232.45
225.66 | 110.08
100.06 | 11.7 | Stall free
Stall free | Abs. | | 43
44 | 1.784 | .8766 | 224.31 | 100.14 | 11.3 | Stall free | Abs. | | 45 | 1.807
1.824 | .8741 | 223.54 | 100.14 | 11.0 | Stall free | Abs. | | 46 | 1.687 | .8544 | 225.52 | 100.17 | 13.0 | Stall free | Abs. | | 47 | 1.623 | .9123 | 212.06 | 90.12 | 11.7 | Stall free | Abs. | | 48 | 1.381 | .9617 | 183.87 | 75.06 | 11.7 | Stall free | Abs. | | 49 | 1.325 | .9579 | 172.71 | 70.10 | 11.7 | Stall free | Abs. | | 50 | 1.226 | .9655 | 146.17 | 60.07 | 11.7 | Stall free | Abs. | | 51 | 1.154 | .9611 | 122.83 | 50.06 | 11.7 | Stall free | Abs. | | 52 | 1.883 | .7699 | 220.26 | 110.11 | 10.7 | Stalled | Abs. | | 53 | 1.740 | .8018 | 207.55 | 100.09 | 10.1 | Stalled | Abs. | | 54 | 1.587 | .8046 | 184.22 | 90.10 | 8.4 | Stalled | Abs. | | 55 | 1.277 | . 7354 | 128.02 | 70.01 | 5.4 | Stalled | Abs. | | 56 | 1.151 | . 7877 | 91.03 | 50.04 | 4.1 | Stalled | Abs. | | | | | | - · · · · · | | | | ^{*}The letter "T" following the reading number indicates Blade-Element Performance data were recorded. ^{**}Abs. - Instrumentation arranged to record absolute pressure at rotor inlet and exit. Diff. - Instrumentation arranged to record difference between rotor inlet and exit pressures. Table 3. - Constants Used in Data Analysis Methods Columns list data in order of increasing immersion number 1.0906 1.0762 1.0709 1.0802 1.0582 . 9827 . 9720 . 9696 . 9745 1.363 1.494 1.650 1.849 2.136 > Frontal Area = 7.2660 Annulus Area = 5.4495 Radii are in inches. Areas are in square feet. + first and last values are casing and hub radii, respectively. 17.283 15.768 14.272 12.738 11.023 | | $\left(\frac{\frac{w}{w^{\star}}}{\left(\frac{w}{w^{\star}}\right)_{u}}\right)$ | $\frac{\left(\frac{w}{w}\right)}{\left(\frac{w}{w}\right)}$ | $\stackrel{\overset{r}{r_{j}}}{\text{(Used for Diffusion Factor)}}$ | of
(Used for
Diffusion
Factor) | |------------|---|---|---|--| | | | | | | | Plane 1.57 | 1.0067
.9206
.8285
.7593 | 17.836
17.166
15.817
14.501
13.198
11.864 | 07
.32
.42
.33
.33 | | | Plane 1.51 | 1.0320
.9483
.8661
.7831 | 17.838
17.148
15.770
14.391
13.012
11.634 | 68
.28
2.51
5.68
9.72 | | | Edge 2 | | 17.887
17.201
15.768
14.354
12.921
11.516 | -4.00
-0.50
3.00
7.00
13.40 | 50.18
45.03
36.17
23.45
5.78 | | Edge 1 | | 18.182
17.392
15.759
14.180
12.456
10.494
9.116 | -4.50
1.00
5.70
12.25
22.20 | 58.78 (62.55)
55.39 (60.14)
52.25 (57.96)
49.71 (56.28)
50.6 (57.88) | | Plane 0.95 | 1,3108
1,1849
1,0814
1,0567
1,0967 | 18.323
17.473
15.733
14.023
12.191
10.023
8.550 | -1.57
1.85
6.10
11.76
20.40 | | | Parameter | A
j |
H
+ | ى
ئى | κ'° (κ'°s) | Table 4. - Listing of Check Case for Blade Element Results Using Design Data. | | INLET AX.
VELOCITY
690.864
693.508
680.879
651.214
529.312 | EXIT AX.
VELOCITY
575.793
562.776
564.862
599.334
661.221 | AXIAL
VEL.RATIO
0.833
0.811
0.811
1.259 | | |---|--|---|---|--| | | INCET ABS
MACH NO.
0.646
0.646
0.647
0.522 | HACH
ABS
0.657
0.792
0.792
0.796 | EXIT REC
14806.VEC
7460.VEC
5050.060
3501.526
204.526
204.236
42.113
42.1133
44.929
45.535
46.535
46.535 | 600
470
400
9
0324
0408 | | 4/14/1967 | 1 N L E T A B S V E L O C I T V 693.000 693.614 684.262 664.387 567.370 | EXIT ABS
VELOCITY
777.226
785.432
822.263
876.914
960.912 | 1 N L E T A R L 1 3 3 4 5 1 1 4 1 1 3 3 4 5 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ************************************** | | A
TS
DATE | ADTOR SPD
AT INLET
1334.214
1208.940
1087.808
955.553 | MOTOR SPD
AT EXIT
1319.562
1209.630
1101.156
991.225 | MX 1 T ABS TANG VEL 550.500 5500 5500 5500 5500 5500 5500 | ATION PRESSURE RATIO ADIABATIC EFF. POLYTROPIC EFF. NOZZLE WEIGHT FLOM F FLOW/NOZ. WEIGHT FLOW F FLOW/NOZ. WEIGHT FLOW | | COMPRESSOR OUTPUT DAT
MENT PERFORMANCE RESUL
READING NUMBER 1 | INLET REL
VELOCITY
1503.455
1393.785
1285.123
1164.969
984.885 | EXIT REL.
VELOCITY
985.726
864.366
757.839
695.226 | INLET ABS
TANG. VEL
0.
0.
0.
0.
0.
1.22
1.220
1.215
1.215
1.203
1.193 | IXED INSTRUMENTATION P A A A C. CHECK WEIGHT FLOWIN E. CHECK WEIGHT FLOWIN | | S.A.
ELEM | INLET REL
MACH NO.
1.4012
1.2991
1.1964
1.0823
0.9055 | EXIT REL.
MACH NO.
0.8332
0.7355
0.6467
0.5993 | CH1
0 4556
0 4987
0 5299
0 5299
0 3837
701, PRESS
1 760
1 760
1 760
1 760 | FIXED INSTA
T.E. CHECK | | B NT NUMBER | INCID ANG
SUCT. SURF
0.075
0.019
-0.003
-1.006 | ANGLE
ANGLE
8.401
10.784
16.196
25.165
39.710 | NT. PRESS RIGE COMPT O. 339999 0.41049 0.41049 0.41049 0.4106 0.4106 0.4106 0.8116 0.8116 0.8116 0.8116 0.9174 9.174 0.9174 | 1.7600
1.8376
1.8500
1.0950
1.0950 | | 104 | INCID ANG
MN.CMBR.LN
3.845
4.769
5.707
6.015 | REL, DEV.
ANG, T.E.
4,346
5,591
7,111 | DIFFUSION
FACTOR
0.471
0.552
0.554
0.448
ADIABATIC
EFFICIENCY
0.8121
0.8121
0.8628 | PRESSURE RATIO ADIAHATIC EFF. POLYTROPIC EFF. FFICTENT L.E. FFICTENT T.E. | | | REL, INLET
FLOW ANG.
62.625
60.159
57.957
58.725 | FLOW ANG.
54.224
49.376
41.761
30.561
17.164 | | TRAVERSE PRESSURE RATIC
TRAVERSE ADIAHATIC EFF
TRAVERSE POLYTROPIC EFI
FLOW COEFFICIENT L.E.
FLOW COEFFICIENT T.E. | | | P P P P P P P P P P P P P P P P P P P | P P P P P P P P P P P P P P P P P P P | P R A D S A | | Table 5. - Simulated Listing for Symbolic Identification of Column Headings. | INLET AX.
VELOCITY | v_{z1} | EXIT AX.
VELOCITY | V ₂₂ | AXIAL
Vel.ratio | $\frac{\frac{v_{22}}{z_{1}}}{v_{21}}$ | | | | | | | | |------------------------------|-------------------|-------------------------|-----------------|-------------------------|---------------------------------------|--------------------------|-----------------------------|--|--|--|--------------------------|-------------------------------------| | INLET ABS
MACH NO. | rt
z | EXIT ABS | m ² | EXIT REL | V [†] 2 | ABS.EXIT
FLOW ANG. | 82 | | | | | | | INLET ABS | \rac{1}{\sqrt{1}} | EXIT ABS
VELOCITY | V ₂ | TANG. VEL | v*1 | ABS.INCET
FLOW AND. | $^{\beta}_{1}$ | • • • | # # #
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | | | | | ROTOR SPO | .T | AOTOR SPD | $\mathbf{u_2}$ | EXIT ABS
TANG.VEL | V _{0.2} | | | PRESSURE RATIO
ADIABATIC BFF.
POLYTROPIC EFF | NOZZLE MEJGHT FLOM
Mejght flom/Noz, Mejght flom
Mejgwt flom/Noz, Wejght flom | | | | | INLET REL
VELOCITY | : <mark>-</mark> | EXIT REL.
VELOCITY | V22 | INLET ABS
TANG, VEL | v ₆₁ | TOT. TEMP
RATIO | $\frac{r_{1.51}}{r_{0.95}}$ | | WEIGHT FLOW/N
Weight flow/N | | TOT, TEMP
RATIO | $\frac{T_1.57}{T_0.05}$ | | MACH NO. | E ^T | MACH NO. | | N
H | ౮ | TOT, PHESS
RATIO | $\frac{P_{1.51}}{P_{0.95}}$ | FIXED INSTRUMENTATION | T.E. CHECK | RUMENTATION | TOT, PRESS
RATIO | P _{1.57} P _{0.05} | | SUCTO ANG | i la | REL TURN
Angle | ۵۵، | AISH CORFF | ပ ^a | POLVTROPIC
EFFICIENCY | r.
a | | o u | FROM FIXED INST | LOSS
COEFFICIENT | iз | | INCID ANG | 4 | REL, DEV.
Ang. T.E. | ° | DIFFUSION | a | ADIABATIC
EFFICIENCY | n
ad | RATIO
C EFF.
IC EFF. |
 | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | ADIABATIC
EFFICIENCY | ad
ad | | REL.INLET
FLOW ANG.
B; | 7 | REL, EXIT
FLOW ANG. | B.2 | | | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | FLOW COEPFICIENT | PARAME | TOT. PRESS
LOSS PARAM | w.cosb.
20 | | RADIAL
POSITION
1
2 | o. 4. fV | RADIAL
POSITION
1 | ।ਅਵਾਨ | RADIAL
POSITION
1 | : 10 4 TV | RADIAL
POSITION | のちょた | | | | RADIAL
POSITION | (M M 4 W | Table 6. - Listing of Blade Element Performance NASA - TASK I (ROTOR 2D) : N.A.S.A. COMPRESSOR OUTPUT DATA DIANE SIEMENT PEGFORMANTE DESILITS | | INLET AX. | | | | | | | EXIT AX. | VPLOCITY | 277.210 | 299,429 | 268.081 | 314.679 | 341.004 | AXIAL | VFL . RATIO | 1.071 | 1.097 | 0.987 | 1.192 | 1.546 | | | | | | | | | | |--|-------------|------------|----------------|---------|---------|---------|---------|-----------|-----------|---------|---------|---------|---------|---------|-----------|-------------|----------|---------|---------|---------|---------|------------|-------------------|--------|--------|--------|--------|--------|--|--| | | INLET ABS | MACH NO. | 0.233 | 0,245 | 0.246 | 0,243 | 0.214 | FXIT ABS | MACH NO. | 0.350 | 0.351 | 0.352 | 0.387 | 0.439 | EXIT REL | TANG. VEL | 372.898 | 342.853 | 255.693 | 195,650 | 95.251 | ABS.EXIT | FLOW ANG. | 46.020 | 41,219 | 47.756 | 43,655 | 45.476 | 740
055
077 | .39
.94799
.94051 | | 1967 | INLET ARS | VELOCITY | 259,635 | 272,971 | 272,873 | 270,096 | 238,365 | EXIT ABS | VELOCITY | 399,675 | 398,083 | 399,009 | 436,651 | 493,052 | INLET RAL | TANG, VFL | 667,489; | 604,816 | 544,216 | 478.050 | 402,750 | ABS, INLFT | FLOW ANG. | 0. | | | 0 | • | B M G | | | RESULTS
6 DATE: 4/27/1967 | ROTOR SPD | AT INLET | 667,489 | 604,816 | 544,216 | 478,050 | 402,750 | ROTOR SPD | AT EXIT | 660,159 | 605,162 | 550.894 | 495,896 | 441.974 | EXIT ABS | TANG. VEL | 287,261 | 262,308 | 295,201 | 300.247 | 346,722 | | | | | | | | PRESSURE RATIO
ADIABATIC EFF:
POLYTROPIC FFF: | NOZZLF WEIGHT FLOW
FLOW/NOZ, WEIGHT FLOW
FLOW/NOZ, WEIGHT FLOW | | | INLFT REL | VELACITY | 716,207 | 663,563 | 608.794 | 549,075 | 467,971 | EXIT HEL. | VELACITY | 465,053 | 455,207 | 370,734 | 372,552 | 363,258 | INLET ABS | TANG. VEL | | | .0 | 0 | •0 | TOT. TEMP | RATIO | 1,065 | 1,053 | 1,052 | 1.049 | 1.050 | UMENTATION P | NEIGHT FLOW/N
WEIGHT FLOW/N | | SE ELEMENT PERFORMANDE
S READING NUMBER | INLET REL | MACH NO. | 0.6428 | 0.5966 | 0.5479 | 0.4940 | 0.4207 | EXIT REL. | MACH NO. | 6.4073 | 0.4015 | 0.3273 | 0.3302 | 0,3233 | CH1 | | 0.4039 | 0,4555 | (1,4815 | 0.4945 | 0.3737 | TOT. PRESS | PATIO | 1.170 | 1.168 | 1,159 | 1.168 | 1.179 | FIXED INSTRUMENTATION | L.E. CHECK
T.E. CHECK | | BLADE
NT NUMBER 6 | INCID ANG | SUCT. SURF | 6.255 | 5.572 | 5.524 | 4.816 | 3.405 | REL. TURN | ANGLE | 15.432 | 16.844 | 19.839 | 29.525 | 45.678 | ST, PRESS | RISE COEFF | 0.36161 | 0.43916 | 0.48299 | 0.53739 | 0.51417 | POLYTROP1C | EFFICIENCY | 0.7148 | 0.8673 | 0.8319 | 0.9244 | 0.9598 | 1,1689 | | | 1104 | INCID ANG | MN.CMBR.LN | 10,025 | 10.322 | 11.234 | 11,386 | 10.685 | REL, DEV, | | | α. | 7.475 | 8,421 | , à 2 | DIFFUSION | FACTOR |
6.497 | 0,446 | 0,539 | 0.471 | 0.405 | ADIASATIC | EFFICIENCY | 0.7084 | 0.8643 | 0.8283 | 6.9227 | 0,9588 | | TENT L.E. H | | | REL . INLET | FLOW ANG. | 68.805 | 55.712 | 63.484 | 61.096 | 61.285 | REL. EXIT | FLOW ANG. | 53,373 | 48,868 | 43.645 | 31.871 | 15.606 | | | | | | | | | | | | | | | TRAVERSE PRESSURE RATIO TRAVERSE ADIABATIC EFF. THAVERSE POLYTROPIC EFF. | FLOW COEFFICE
FLOW COEFFICE
PERCENT DESIGN | | | BADIAL | POSITION | ।
 जना
 | 2 | r | 4 | 7 | BADIAL | POSITION | - | 2 | ₩ | 4 | īv | RADIAL | PUSITION | | 2 | ٣ | 4 | ī. | BADIAL | P0517104 | | 2 | ٣ | 4 | 5 | | | ## PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | RADIAL
POSITION | TOT. PRESS
LOSS PARAM | ADIABATIC
EFFICIENCY | LOSS
COEFFICIENT | TOT. PRESS
RATIO | TOT, TEMP
RATIO | | |--------------------|--------------------------|-------------------------|---------------------|---------------------|--------------------|--| | 1 | 0.0475 | 0,7391 | 0.2170 | 1.172 | 1,063 | | | 2 | 0.0180 | 0.8985 | 0.0819 | 1,174 | 1,052 | | | 3 | 0.0159 | 0.9187 | 0.0724 | 1,168 | 1.049 | | | 7 | 0.0030 | 0.9873 | 0.0132 | 1,174 | 1.047 | | | 5 | -0,0110 | 1,0344 | -0.0487 | 1,183 | 1,048 | | Table 6. - Listing of Blade Element Performance (continued). NASA - TASK 1 (ROTOR 2D) N.A.S.A. COMPRESSOR DUTPUT DATA | | | 104 | JINI NUMBER 7 | 7 KEADING NUMBER | NUMBER 7 | 7 DATE 4/27/1967 | 1967 | | | |----------------|------------------------|----------------|---------------|-----------------------|-----------|---|------------|--|-----------| | KADIAL | REL. INLFT | INCIP ANG | | INLET REL | INLFT REL | ROTOR SPD . | INLET ARS | INLET ABS | | | POSITION | FICH ANG. | MN.CMBP.LN | SUCT.SURF | MACH NO. | VELOCITY | AT INLET | VELOCITY | MACH NO. | VELOCITY | | , | 082.40 | 7.440 | | 0.9236 | 1021.861 | 934,634 | 413,109 | 0.373 | | | C ₁ | 64.607 | 6.217 | | (1.8570 | 945.452 | 846.878 | 420,330 | 0,381 | | | 80 | 01.711 | 9.461 | 3.751 | 0.7855 | 866.347 | 762.024 | 412,162 | 0.374 | | | 4 | 20.437 | 6.727 | 3.157 | 0.7092 | 782.098 | 669,377 | 404.489 | 0.367 | 395,279 | | r | and o. | 9.238 | 1.958 | 0.6021 | 665,818 | 563,940 | 353.957 | 0.320 | | | न्दां∴स्भ | TIKE TENIT | REL. DEV. | REL. TUAN | EXIT REL. | EXIT REL. | ROTOR SPD | EXIT ABS | EXT ABS | EXIT AX. | | POSITION | 1 LUN A 200. | AMG. T.E. | ANGLE | MACH NO. | CITY | T EX I | VELOCITY | CNITAN | VE 00 137 | | * -1 | 52.521 | 2.341 | 13.699 | 6.5772 | 648.699 | 924.370 | 566.960 | 4 | 486 514 | | N | S.A. 5.4 | 3.602 | 14.975 | 0.5337 | 613,603 | 847.362 | 560.476 | 687 | 485 500 | | €: | -7.706 | 7.616 | 17.925 | 0.4364 | 500.807 | 771.374 | 558.197 | 6.4.0 | 361.000 | | 4 | 54.574 | F.124 | 27.863 | 0.4456 | 504.000 | 694,346 | 609,648 | 0.535 | 427.060 | | T, | 25.429 | 10.049 | 44.016 | 0.4331 | 489.857 | 618.862 | 679.524 | 0.601 | 459,371 | | RADIAL | | DIFFISION | ST, PRESS | CH1 | INLET ABS | EXIT ARS | IN ET RE | EX T REI | 14.54 | | POSITION | | F ACTOR | RISE COFFF | | TANG | TANG VE | TANG VE | TANG ABI | V#1 0 147 | | · | | 6.486 | 0,37974 | 0.4457 | | 394,185 | 034.634 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 0.144.10 | | Λ: | | 0.408 | 0,44650 | n.4852 | . 0 | 386.876 | 846.878 | 460.486 | | | ₩) | | 0.571 | 0.49925 | 6.5163 | . 0 | 425.082 | 762.024 | 346.292 | | | 4 | | 6.507 | 0,55985 | 0.5332 | | 471.004 | 669 377 | 242.046 | 100.0 | | r | | 0.444 | 0.55115 | 0.4260 | | 488,625 | 563.940 | 150.237 | 1.402 | | YADIAL | | ADIABATIC | POLYTROPIC | TOT, PRESS | TOT. TEXP | | ABS. TALET | ARC EXIT | | | POSITION | | EFFICIENCY | EFF ICIENCY | 01 | RATIO | | NA MO | SAA MOTE | | | | | 0.7906 | 0.7997 | | 1.119 | | | 44.11.88 | | | Λ. | | 9098.0 | 0.8667 | | 1.106 | | | 43.652 | | | κ: | | 0.8329 | 0.8396 | | 1.104 | | . 0 | 40.638 | | | 4 | | 6.9224 | 0.9257 | | 1,099 | | | 45,323 | | | u | | 5446.0 | 0.9508 | | 1.100 | | • 0 | 46.768 | | | | ddd dSedaesii | PPPSSURE BATIO | = 1.3582 | FIXED INSTRUMENTATION | | CITAG RAIISARG | | | | | | THE TOTAL AND TAKE | THAT IT FEE | | | | | | | | | | TANKERSE POLYTPOPIO EF | VIPCPIO EFF. | = 0.8687 | | < D. | POLYTROPIC FFF. | 0.8995 | 2000 | | | | CLO. COEFFICIENT L.E. | SENT L.E. | | | i | NOZZLE WEIGHT FIO | 0W = 14 | • | | | | PERCENT DESIGN SPEED | SPEED | = 950
= 70 | T.E. CHECK METORY | | FLOW/NOZ, WEIGHT FLOW
Flow/NOZ WEIGHT Flow | 19 11 | 0.08344 | | | | | | | | | | • | 2010 | | | | ran | FARAMETERS DETERMINED FROM FIRED INSTRUMENTATION | ED FROM FIALD | INSTRUMENTALION | | | |--------------------|--------------------------|--|---------------------|---------------------|--------------------|--| | RADIAL
POSITION | TOT, PRESS
LOSS PARAM | ADIABATIC
EFFICIENCY | LOSS
COEFFICIENT | TOT. PRESS
RATIO | TOT, TEMP
RATIO | | | | 0,0399 | 0.7877 | 0,1789 | 1,367 | 1,119 | | | 2 | 0.0221 | 0,8835 | 0.0997 | 1,361 | 1,104 | | | 3 | 0.0222 | 0.8926 | 0,1013 | 1,347 | 1,100 | | | 4 | 0.0071 | 0,9712 | 0.0307 | 1,356 | 1,094 | | | > | 0.0050 | 0.9848 | 0,0222 | 1,372 | 1.096 | | Table 6. - Listing of Blade Element Performance (continued). NASA - TASK I (ROTOR 2D) | | N H H | VELOCITY | 686.935 | 632,037 | 617,053 | 584.645 | 473,068 | ENIT AX. | VELOCITY | 506,735 | 526.924 | 545,596 | 539.260 | 559,986 | AXIAL | VEL RATIO | 0,835 | 0.833 | 0.836 | 0.922 | 1.184 | | | | | | | | | |--|------------|------------|----------|----------|----------|---------|---------|-----------|------------|----------|----------|---------|---------|---------|-----------|------------|----------|----------|---------|---------|---------|------------|--------------|--------|--------|--------|--------|--------|---| | | TALET ABS | 2 | | 0.584 | 0.573 | 0.552 | 0.467 | EXIT ABS | MACH | | 6 | Ċ | | 9 | FXI | TANG VEL | 630,508 | 562.237 | 451.904 | 353,791 | 183,147 | ABS, EXIT | FLOW ANG. | 47.744 | 45.027 | 46.307 | 44.976 | 47.559 | 1.6710
0.8916
0.8986
1.28
0.994.9 | | /4967 | TALET ARS | VFLOCITY | 608.812 | 632,133 | 620.119 | 598,266 | 510.944 | EXIT ABS | VELOCITY | 754,401 | 744.988 | 746.877 | 765,175 | 840.476 | INLET REL | TANG, VEL | 1201.452 | 1088,643 | 979.545 | 860.470 | 724,933 | ARS. INLET | FLOW ANG. | | · c | • | • | • 0 | 330000000000000000000000000000000000000 | | JI DATA
RESULTS
8 DATE - 4/27/4967 | ROTOR SPD. | AT INLET | 1201.452 | 1088,643 | 979.565 | 860,470 | 724,933 | ROTOR SPD | AT EXIT | 1188,258 | 1089.265 | 991,585 | 892,592 | 95.53 | EXIT ABS | TANG, VEL | 557,750 | 527,028 | 539,681 | 538,801 | 612,387 | | | | | | | | TION PRESSURE RATIC ADIABATIC EFF. POLYTROPIC FFF. NOZZLE WEIGHT FI FLOW/NOZ. WEIGHT FI FLOW/NOZ. WEIGHT FI 01 | | PERFORMANCE RESULT
ING NUMBER 8 D | INLET RE | VFLOCITY | 1346.900 | 1258.863 | 1159,351 | | 886. | EXIT REL. | VELOCITY | 809.677 | 770.298 | 686.138 | 648.347 | 604.090 | | TANG, VEL | | 0 | •0 | • 0 | •0 | TOT. TEMP | RATIO | 1.214 | 1.189 | 1.181 | 1,163 | 1.163 | INSTRUMENTATION A P P CHECK WEIGHT FLOW/N CHECK WEIGHT FLOW/N | | N.A.S.A. COMPRE
BLADE ELEMENT PE
R 8 READING | INLET REL | MACH NO. | 1.2366 | 1.1624 | 1.0712 | 0.9666 | 0.8111 | EXIT REL. | MACH NO. | 0.6907 | 0.6564 | 0.5880 | 0.5617 | 0.5280 | CH1 | | 0.5071 | 0.5613 | 0.6008 | 0.5086 | .509 | TOT. PRESS | PATIO | 1.729 | 1.709 | 1.678 | 1.641 | 1.640 | FixeD insTR | | T NUMBE | INCID ANG | SUCT. SURF | 0.049 | -0.278 | -0,169 | -0,474 | -1.007 | REL. TURN | ANGLE | 11.987 | 12.983 | 16.559 | 22.538 | 38.762 | ST. PRESS | RISE CUEFF | 0.40789 | 0.48898 | 0,55743 | 0.01158 | 0.61072 | POLYTROPIC | EFF 101 ENCY | 0.8071 | 0.8854 | 0.8905 | 0.9378 | 0.9376 | 1.0832
1.08724
1.0.8814
1.0.980
1.0.950 | | 10d | INCID ANG | MN.CABR.LN | 4.419 | 4.472 | 5.542 | 6.036 | . 27 | REL. DEV. | ANS. T.E. | • | 1.349 | 5.064 | 9.818 | 12.331 | DIFFUSION | FACTOR | 0.550 | 0.528 | . 55 | 0.522 | 4.8 | ADIABATIC | EFFIG1ENCY | 0.7917 | 0.3764 | 0.4822 | 0.7333 | 0.0331 | • | | | ARL.INLET | FLOW ANG. | 24.149 | 508.65 | 242,50 | 55.806 | 55.873 | MSL, FXII | FLOW A'16. | 11.211 | 44,879 | 41.234 | \$3.208 | 13.111 | | | | | | | | | | | | | | | TRAVERSE PRESSURE RATIO TRAVERSE ADIARATIC EFF. TRAVERSE POLYTROPIC EFF FLOA COMPFICIENT L.E. FLOA COMPFICIENT T.E. | | | RADIAL | P0511104 | • | ~ | ĸ | 4 | ς. | RADIAL | POSITION | | ~ | € | 4 | r | HADIAL | POSITION | -1 | C. | ۳ | 4 | ĸ | HADIAL | POSITION | ⊶ : | ~ | ₩. | 4 | ī | | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | TOT. PRESS | ADIAE | ADIABATIC | ross | TOT. PRESS | TOT. TEMP | |------------|-------|-----------|-------------|------------|-----------| | | EFFIC | CIENCY | COEFFICIENT | RATI 0 | RATIO | | 6419 | 0.7 | 7778 | 0.2086 | 1.697 | 1,210 | | 0224 | 9.0 | 8964 | 0.0978 | 1,710 | 1,185 | | 0195 | 5.0 | 9141 | 0.0858 | 1,672 | 1,173 | | 0,0067 | 0.9 | 0.9723 | 0.0297 | 1.638 | 1,156 | | 0165 | 0.5 | 9475 | 0,0740 | 1.620 | 1,156 | Table 6. - Listing of Blade Element Performance (continued). WASA - TASK ! (ROTOR 2D) | | INLET AX. | VELOCITY | 703,852 | 722,635 | 741.396 | 678.677 | 550.308 | EX!T AX. | VELOCITY | 591, R03 | 594.906 | 533,306 | 611.674 | 602.122 | AXIAL | VEL.RATIO | 0.841 | 0.826 | 0.750 | 0.901 | 1.094 | | | | | | | | | | | | |--
--|------------|----------|----------|----------|----------|----------|---------------------|----------|----------|----------|----------|---------|---------|-------------|------------|----------|----------|----------|---------|---------|------------|-------------|--------|--------|----------|--------|--------|--|--------------------------|--|------------------| | | INLET ABS | MACH NO. | 0.656 | 0.674 | 0.668 | 0.647 | 0.548 | EXIT | HACH | | | 0.689 | | .0 | | TANG. VEL | 678.860 | 630,357 | 486.144 | 371.024 | 223,430 | ABS.FXIT | FLOW ANG. | 47.307 | 44.177 | 49.101 | 45.454 | 47.649 | 1.824n
0.8657 | 3766
3766 | 18472 | .98753 | | 4727/1967 | INLET ARS | ۲ | 706,028 | 722.745 | 714.930 | 694.490 | 594.368 | EXIT ABS | VELOCITY | 873.764 | 832,362 | 815.018 | 874.744 | 905,232 | INLET REL | TANG. VFL | 1335.019 | 1209,669 | 1088.464 | 956,129 | 805.525 | APS. INLET | FLOW ANG. | ċ | ċ | .0 | ٥. | ٥. | 4 11 | # MO 13 | | • | | <u>"</u> | POTOR SPD | AT INLET | 1335,019 | 1209.669 | 1088,464 | 956,129 | 805,525 | ROTOR SPE | AT EXIT | 1320,358 | 1210,360 | 1101,821 | 991,823 | 883,974 | FXIT ABS | TANG, VEL | 641.498 | 580.003 | 615.677 | 650.799 | 640,544 | | | | | | | | PRESSURE RATIC
ADIABATIC EFF. | POLYTPOPIC FFF | METGHT F | UZ, WEIGHT FL | | SSOR OUTPUT D. RECRES! | INLET REL | 7 | 1510,216 | 1409,135 | 1302,260 | 1141,736 | 1001,072 | EXIT REL. | VFLOCITY | 901,551 | 868.144 | 722,172 | 7,9,336 | 558,064 | INLET ABS | TANG. VEL | 0 | 0. | 0 | 0 | 0 | TOT. TEMP | RATIO | 1.276 | 1.227 | 1,229 | 1.207 | 1.197 | | a z | | WEIGHT FLOW/NUZ. | | N.A.S.A. COMPRESSOR OUTPUT DATA
BLADE ELEMENT PERFORMANCE RESULTS
9 READING NUMBER 9 DA' | INCET REL | Z | 1,4038 | 1.3149 | 1.2161 | 1.3016 | 0.9232 | EXIT REL. | MACH NO. | n.7490 | 11.7344 | 0.6102 | 0.6190 | 0.5713 | Ch1 | | 0.4838 | 0.5500 | 0.5922 | 0.6624 | 0.5015 | TOT. PRESS | PAT:0 | 1,920 | 1.890 | 1,619 | 1,839 | 1.755 | FIXED INSTRUMENTATION | | | T. GIECK | | NT NUMBER | INCID ANG | SUCT. SURF | -0.349 | -0.993 | -1.128 | 1.643 | -2.220 | REL. TUPN | ANGLE | 13.281 | 12,583 | 14.481 | 23.392 | 35.302 | ST. PRESS | RISE COFFE | 0.36648 | 0.46022 | 0.53250 | 0.59031 | 45784.0 | POLYTPUPIC | EFF101EMOY | 0.7650 | 0.3901 | 0.3234 | 0.9272 | 0.3946 | 1,6523 | | • | 100 | | 104 | 0 NA C L D N F | MA CABR LX | 3,421 | 3.757 | 4.582 | . 32 | 5.160 | REL. DEV. | - | -1.261 | 1.531 | 6.101 | 7.799 | 14.573 | NCISHEIL | FACTOR | 0.558 | 3,522 | 0.65.0 | 3,735 | 3.504 | AUIABATIC | KONBIUI EBS | 3.7437 | 3.4793 | 0.4145 | 3.7297 | 438F.C | H CITAS CARS SATIONS AND A MINISTER OF THE BEST | | + H | SPEED | | | 1 in 1 Ni - 1 in 1 | FILL A VG. | 62.241 | 59.147 | 36.357 | 54.637 | 15.60J | REL EXIT | | . W. C | 46.501 | 42,331 | 34.240 | 20.333 | | | | | | | | | | | | | | | 104 48541487
104 48541487 | 7.447=48E POLYTRO313 EFF | TABLE TO THE | PERCENT DESIGN | | | 3. T. A. D. C. D. C. A. D. C. A. D. C. A. D. C. A. D. D. C. D. D. C. D. D. D. C. D. D. C. D. D. D. D. D. C. D. D. D. D. D. C. D. | >C11150d | - | · ^ | ~ | ~ ~ | 5 | 7 4 11 1 4 ₹ | 2051113W | | ٠, ٥ | · ~: | 4 | r | A A D I A i | NO111504 | | · ^ | m | 4 | ž | 3A1014 | P051113V | | 0 | ∽ | 4 | ır | | | | | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | | 25 | FANATELENS DELENHINED INON LINED INSTRUMENTALION | מו נוערו ודעדו מי | NOT TWI WITH TO | | |--------------------|--------------------------|--|---------------------|---------------------|--------------------| | RADIAL
POSITION | TOT. PRESS
LOSS PARAM | AD1ABATIC
EFFICIENCY | LOSS
COEFFICIENT | TOT. PRESS
RATIO | TOT, TEMP
RATIO | | - | 0,0575 | 0,7499 | 0,2387 | 1.845 | 1,255 | | 2 | 0,0277 | 0.8754 | 0,1203 | 1.874 | 1,225 | | 8 | 0,0309 | 6,98.0 | 0,1378 | 1.814 | 1,215 | | t | 0.0094 | 0.9629 | 0.0408 | 1,823 | 1,194 | | 5 | 0.0215 | 0.9278 | 0.0978 | 1.737 | 1,184 | Table 6. -Listing of Blade Element Performance (continued). NASA - TASK ! (ROTOR 2D) . · ', N.A.S.A. COMPRESSOR NUTPUT NATA BLADE ELEMENT PERFORMANCE RESULTS | |
INLET AX. | VFLOCITY | 762.564 | 773.113 | 759,496 | 722.601 | 588.019 | EXPT AX. | VFLOCITY | 656.699 | 656.853 | 519.477 | 692.191 | 711.563 | AXIAL | VFL. RATIO | 0.861 | 0.850 | 0.684 | 0.958 | 1.210 | | | | | | | | | |--|-----------|-------------|----------|----------|----------|--------------------------------------|----------|------------------------|-----------|----------|----------|----------|----------|----------|------------|------------|----------|----------|------------|---------------------|---------|-----------------|--|--------|--------|---------|--------|--------|--| | | INLET ABS | | | | | | | EXIT ARS | MACH NO. | 0.794 | 0.768 | 0.721 | 0.840 | 606.0 | FXIT REL | TANG. VEL | 743.627 | 694,199 | 524.227 | 336.290 | 225.523 | ABS.EXIT | FLOW ANG. | 47.174 | 44.120 | \$2.929 | 47.468 | 46.380 | . 9430
. 8118
. 8285
. 99
. 9828
. 1059 | | 1967 | INLFT ARS | VELOCITY | 764.922 | 773.231 | 763.270 | 739.437 | 635,098 | EXIT ABS | VELOCITY | 967,153 | 915.008 | R62.188 | 1027,465 | 1045.240 | INLET RFL. | TANG. VEL | 1468.288 | 1330,425 | 1197.121 | 1051,576 | 885,937 | ARS, INLET | FLOW ANG | ٥. | ٠. | .0 | c. | ċ | 2000 | | TE 4/27/ | | | | • | | | 845,937 | ROTOR SPD | AT EXIT | 1452,164 | 1331,185 | 1211.811 | 1090.832 | 972.218 | L × | TANG.VEL | 708. | 636,986 | 687,583 | 754,542 | 746.694 | | | | | | | | ITION PRESSURE RATIC ADLYTROPIC FFF. NOZZLE WEIGHT FLOW I FLOW/NOZ. WEIGHT FLOW | | ELEMENT PERFORMANCE RESULTS READING NUMBER 10 DA | INLET REL | VFLOCITY | 1655,589 | 1538,804 | 1419.747 | 1285,526 | 1090.062 | EXIT REL. | VEL OCTIV | 993,148 | 955,721 | 738,520 | 774,237 | 765,454 | INLET ABS | TANG. VEL | 0 | 0 | .0 | 0 | 0. | TOT. TEMP | RATIO | 1,332 | 1.272 | 1.269 | 1.265 | 1.239 | WEIGHT FLOW/ | | | INLET REL | MACH NO. | 1.5509 | 1.4469 | 1.3352 | 1.2061 | 1.0100 | FX17 REL. | MACH | 0 R154 | 0.8017 | 0.6172 | 0.6632 | n.6656 | CH1 | | 0.4229 | 3.4903 | 3,5268 | 0.5100 | 0.4074 | TOT, PRESS | ່ວ | 800'2 | 000. | 1.865 | 2.037 | 1.951 | FIXED INSTRUMENTATION L.H. CHECK WEIGHT FLO T.E. CHECK WEIGHT FLO | | BLADE
Pojnt number 10 | INCID ANG | SUCT. SURF | 0.005 | -0.301 | -0.352 | - 0.775 | -1.453 | Saut . IAA | T I SNA | 14,002 | 13.256 | 12,347 | 29.593 | 38.841 | ST. PRESS | RISE COFFE | 0.2934K | 0.38504 | 0.45122 | 0.48292 | 0.48502 | POLYTROPIC | FEFFICIENCY | 0,6954 | 0.8239 | D.740H | 0,8647 | 0.8935 | 1,9777
0,7726
0,7933
0,980
0,980 | | I (a | 91V (1011 | 2 - 00 | | 0.4 | α | 7.7.7 | 5.327 | BEL DEV. | . u L 074 | 0.00 | 1.553 | 9.191 | 2.452 | | NULSERION | FACTOR. | 35. | 7.0.0 | 1.427 | . 5. 11.00
11.00 | 0,165 | A D I ? A T 1 ? | > 0.20世上で、19.40世 | 0.5646 | 9.3950 | 1.7259 | 3,4500 | 0.3830 | SSURE CATTO = AddIIC EFF. = YTROPIC EFF. = 11-NT C.E. = SPEED | | | THIND THE | | 10 1 C C | 25.80 | 0.4 | 2 46
2 16
3 16
3 16
3 16 | 24.427 | BE, CXIT | | | 45.533 | 43.201 | 75.012 | 17.546 | | | | | | | | | | | | | | | TRAJERS PRESSURE MATIO TRAJERSE ANIAMATIC EFF. TRAJERSE POUTROPIN EFF. FUNT CORFECTION U.E. FUNT CORFETCION U.E. PERCENT DESIGN SPEED. | | | RADIAL | NO LET 1900 | | 1 0 | | ~ 4 | r w | - 44
C: 44
O: 45 | EC 11.000 | , n | ٠, ٠ | . ~ | 0 41 | ı v | 2
2 | 20101202 | | 10 | . ~ | - 4 | ٠.٠ | 4 1 1 4 9 | 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | • • | ~ | 4 | τ | | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | | TOT. TEMP
RATIO | 1,299 | 1,249 | 1.240 | 1.225 | |--|--------------------------|--------|--------|--------|--------| | | TOT, PRESS
RATIO | 1,949 | 1,870 | 1,932 | 1.957 | | | LOSS
COEFFICIENT | 0,2891 | 0.2181 | 0,1593 | 0.0887 | | INMINITER STREET | ADIABATIC
EFFICIENCY | 0.7020 | 0,7870 | 0.8619 | 0.9383 | | THE STATE OF S | TOT. PRESS
LOSS PARAM | 0.0702 | 0.0412 | 0,0388 | 0.0198 | | | RADIAL
POSITION | - 0 | 3 | , 4 | | Table 6. - Listing of Blade Element Performance (continued). NASA TASK 1 (HOTOR 2D) N.A.S.A. COMPHESSOR NUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS BINT NUMBE? 11 READING NUMBER 11 DATE : 4/27/4 | | IN FT AX. | VEI OCHTY | 730,467 | 737.802 | 720.366 | 686.225 | 564.376 | EXIT AX. | VELOCITY | 800.082 | 723,041 | 654,126 | 864,623 | 900.044 | AXIAL | VEL RATIO | 1.695 | 0.980 | 906.0 | 1.260 | 1.596 | | | | | | | | | | | | | |------------------|--------------|-------------|----------|----------|------------|----------|----------|-------------|-------------|----------|----------|----------|----------|----------|-------------|------------|------------|----------|----------|---------|---------|------------|-------------|--------|--------|--------|--------|--------|-----------------------|---|---------------------------------------|-----------------------|----------------------| | | INLET ABS | MACH NO. | 0.685 | 0.691 | 0.678 | 0.656 | 0.564 | EXTT ABS | | 0.754 | • | • | 0.892 | • | EXIT REL | TANG, VEL | 1 1082,534 | 945.250 | 754.995 | 523,476 | 270.448 | ** × 3 | SNA MOIN | 16.401 | 20.074 | 27.878 | 28.406 | 34.226 | 4911 | 775 | A72 | 0.99031 | 0950 | | 1967 | INLET ARS | VELOCITY | 732,726 | 737,914 | 723,945 | 702,243 | 609.542 | × | VELOCITY | 836,278 | 769,831 | 740.797 | 988.690 | 1110.578 | INLET RFL | TANG. VFL | 1334,035 | 1208,778 | 1067,642 | 955,424 | 904.931 | TO INT | 24 30 14 | | | · c | | | u | u | ,
, | | n | | DATE - 4/27/1967 | ROTOR SPB | AT INLET | 1334,035 | 1208.778 | 1087,662 | 955.424 | 804,931 | ROTOR SPD | AT EXIT | 1319,385 | 1209,468 | 1101,008 | 991.092 | 843,323 | EXIT ABS | TANGIVEL | 236,851 | 244,219 | 346,013 | 447,616 | 612,875 | | | | | | | | PRESSURE RATIC | DIABATIC EFF. | POLYTROPIC EFF. | FLOW/NOZ. WEIGHT FLOW | OZ. WEIGHT FLO | | NUMBER 11 | INLET REL | VELOCITY | 1522,017 |
1416,213 | 1306,562 | 1185,723 | 1009,693 | EXIT REL. | VELOCITY | 1347.271 | 1190.094 | 999.537 | 1016.302 | 944.837 | INLFT ABS | TANG. VEL | 0 | 0 | • 0 | •0 | • 0 | TOT TEMP | RATIO | 1.094 | 1.103 | 1.117 | 1.146 | 1.159 | | A | ā Þ | WEIGHT FLOW/N | | | READING NUMBER | INCET MEL | MACH NO. | 1,4222 | 1.3265 | 1.2233 | 1.1042 | 0.9334 | EXIT REL. | MACH NO. | 1.2151 | 1.0510 | 0.4831 | 1.9168 | 9.8829 | CH1 | | 0,1584 | 0.2188 | 1.2288 | 3.1609 | -0.1188 | TOT, PRESS | PATIO | 1,295 | 1.292 | 1.257 | 1.496 | 1.573 | FIXED INSTRUMENTATION | | | L.E. CHECK | CHECK | | POINT NUMBER 11 | INCID ANG | SUCT. SUAF | -1,253 | -1,539 | -1,477 | -1,967 | -2,915 | REL, TURY | ANGLE | 7.764 | 6.014 | 7,389 | 23.123 | 38,255 | ST. PRESS | RISE CUEFF | 0.09424 | 0.15895 | 0.18816 | 0.16586 | 0.01541 | POLYTRIFIC | EFF 1C1EVCY | 0.8735 | 0.7515 | 0.5914 | O.d456 | 0.8801 | 1.3740 | | 0.990 | • | 100 | | 104 | INCID ANS | Z - abro zz | 2.517 | 3,211 | 4,233 | 4,503 | 4.354 | PEL, DEV. | ANG. T.E. | 3.353 | 7.557 | 12.324 | 7.742 | 10.329 | PLFF JST 33 | FAUTOR | 9.172 | 0.222 | 0.316 | 0.251 | 0,193 | STAPATIC | ADMILIES B | 3.3220 | 3,7423 | 3.5783 | 3.4365 | 3.1724 | PRESSUME RATIO = | • 1 | u. | <u>ш</u> | | | | 7-111,67 | FLUX ANG. | 61.237 | 56.531 | 54.45 | 24. 713 | 32.454 | AFL, FKII | FILLY A AG. | 52.53 | 55.537 | 46.044 | 51.132 | 14.719 | | | | | | | | | | | | | | | TRAVERSE POR | THE COURSE OF THE PARTY | 1 1 1 1 1 1 1 1 1 1 | FLOW CORFFICIENT | PERCENT DESIGN SPEED | | | 7 A l' 1 A L | P0511103 | | ·× | ~ 5 | 7 | r | - A 1 1 A - | P.15111.51 | + | :50 | ~ | 4 | r | संकत्तिम् | POSITION | ,-, | ~ | ~ | 4 | ኍ | 741.147 | POSITION | - | ^ | ~; | 4 | ır | | | | | | # PARAMETERS DETERMINED FROM FIXED INSTRIMENTATION | | TOT, TEMP
RATIO | 1.096
1.110
1.111
1.135
1.161 | |--|--------------------------|--| | STRUMENTATION | TOT, PRESS
RATIO | 1,291
1,301
1,256
1,489
1,548 | | FROM FIXED IN | LOSS
COEFFICIENT | 0,0905
0,1480
0,2197
0,0849
0,2061 | | PAKAMETEKS DETERMINED FROM FIXED INSTRUMENTATION | ADIABATIC
EFFICIENCY | 0.7865
0.7111
0.6079
0.8925
0.8241 | | PAK | TOT. PRESS
LOSS PARAM | 0.0197
0.0301
0.0436
0.0196
0.0462 | | | RADIAL
POSITION | 2 6 3 3 5 1 | Table 6. - Listing of Blade Element Performance (continued). NASA - TASK I (ROTOR 2D) N.A.S.A. COMPRESSOR DUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS | | IN FT AX. | VELOCITY | 732,278 | 739.063 | 720.479 | 685.858 | 564,156 | EXIT AY. | VELOCITY | 698.125 | 664.850 | 551 597 | 727.434 | 804.930 | AXIAL | 0 t ± 4 0 | 0.953 | 0.900 | 0.766 | 1.061 | 1.427 | | | | | | | | | | |---|-------------|------------|----------|----------|----------|----------|----------|-----------|-----------|------------|----------|----------|---------|----------|-----------|------------|----------|----------|----------|---------|---------|------------|-------------|--------|--------|--------|--------|--------|---|--| | | INLET ABS | Q | 0.686 | 0.692 | 0.677 | 0.656 | 0.563 | ABA TEXT | MACH NO. | 0.697 | 0.673 | 0.636 | 0.792 | 0.934 | EXIT REL | TANG VE | 917.193 | 810.051 | 609.612 | 466.523 | 247.262 | - X | SNA MOTE | 20.083 | 31,030 | 41,725 | 35,819 | 38,333 | 560
275
380 | 3638
3893 | | 4/27/1967 | INLET ARS | VELOCITY | 734.542 | 739.176 | 724,059 | 701,838 | 609,325 | EXIT ABS | VELOCITY | 807,463 | 775.9n4 | 739.629 | 901,541 | 1043,916 | INLET REL | TANG | 1334,633 | 1209.320 | 1088,150 | 955,853 | 805,292 | F3 141 204 | | • | | | 0. | 0. | 0 = 1.5660
0.8275
0.8380
0.8380 | S | | Ŧ | ROTOR SPD . | AT INLFT | 1334,633 | 1209.320 | 1088,150 | 955,853 | 805.292 | ROTOR SPB | AT EXIT | 1319,976 | 1210,010 | 1101,502 | 991,536 | 883,719 | FX17 ABS | TANGVE | 402,783 | 399,959 | 491,891 | 525,013 | 636,457 | | | | | | | | TION PRESSURE RATIO
ADIABATIC EFF.
POLYTROPIC EFF. | DZ. WEIGHT FLOW
DZ. WEIGHT FLOW | | ELEMENI MERFURMANGE RESULTS
READING NUMBER 12 DA | INLET REL | VFLOCITY | 1523,417 | 1417,334 | 1307,031 | 1185,846 | 1009,838 | EXIT HEL. | VELACITY | 1153.691 | 1047.971 | 822,631 | 848.782 | 863.610 | INLFT ABS | TANG, VE | 0 | •0 | 0 | .0 | .0 | ToT TEMB | RATIO | 1.174 | 1,162 | 1,171 | 1,171 | 1,178 | JMENTATION PE | HEIGHT FLOW/NOZ | | | INLET REL | MACH NO. | 1.4222 | 1.3277 | 1.2227 | 1,1077 | 0.9328 | EXIT REL. | MACH NO. | 6466.0 | 0.9086 | 0.7078 | 0,7636 | 0.7730 | CH1 | | 0.3444 | 6,3966 | 0.3943 | 0,3668 | 0.1140 | TOT, PRESS | 2AT10 | 1.562 | 1.556 | 1.450 | 1.619 | 1,638 | FIXED INSTRUMENTATION | L.E. CHECK WEIGHT
T.E. CHECK WEIGHT | | BLADE
INT NUMBER 12 | INCID ANG | SUCT, SURF | -1.302 | -1,571 | 1.469 | -1.94] | -2,894 | REL. TURN | ANGLE | 8.524 | 7.947 | 8.631 | 21.666 | 37.910 | ST. PRESS | RISE COEFF | 0.23913 | 0.31024 | 0.33434 | 0.36998 | 0.20790 | POLYTROPIC | EFFICIENCY | 0.7960 | 0.8411 | 0.6723 | 0.6711 | 0.8651 | 1.5659
0.8006
0.8128
0.980 | _ | | 104 | INCID ANG | MN.CMBR.LN | 2.468 | 3.179 | 4.241 | 4.629 | 4.386 | REL. DEV. | ANG. T.E. | 2.543 | 5,593 | 11.690 | 9.223 | 11.296 | DIFFUSION | FACTOR | 0.339 | 0.355 | 0.485 | 0,389 | 0.299 | ADIABATIC | EFF (CIENCY | 0.7828 | 0.8309 | 0.6547 | 0.8620 | 0.8553 | SSURE RATIO = ABATIC EFF. = YTROPIC EFF. = | | | | REL.INLET | FLOW ANG. | 61.248 | 28.569 | 26.491 | m | 54.946 | MEL. EXIT | FLOW ANG. | 52.723 | 50.623 | 47.850 | 52.673 | 17.076 | | | | | | | | | | | | | | | TRAVERSE PRESSURE RATIO
TRAVERSE ADIABATIC EFF
TRAVERSE POLYTROPIC EFF
FLOM COEFFICIENT L.E. | FLOW CHEFFICE | | | WADIAL | PUSITION | • | 2 | m | 4 | ī. | BADIAL | POSITION | . 1 | 2 | , | 4 | īv | MADIAL | PUSITION | | ŒΝ | m | 4 | ľ | RADIAL | POSITION | -1 | ~; | m | 4 | ľ | | | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | 1,173 | 1,167 | 1,158 | 1,160 | 1,167 | |--------|--------------------|--|---|--| | 1,550 | 1,556 | 1,479 | 1,625 | 1.628 | | 0,1606 | 0,1451 | 0,1957 | 0.0652 | 0,1280 | | 0.770> | 0.8047 | 0,7472 | 0.9292 | 0,8952 | | 0.0357 | 0,0308 | 0.0398 | 0,0148 | 0.0286 | | 1 | 2 | 3 | 7 | 5 | | | 0.770 0.1606 1.550 | 0.770> 0.1606 1.550
0.8047 0.1451 1.556 | 0.770> 0.1606 1.550
0.8047 0.1451 1.556
0.7472 0.1957 1.479 | 1 0.0357 0.7705 0.1606 1.550 1.173
2 0.0308 0.8047 0.1451 1.556 1.167
3 0.0398 0.7472 0.1957 1.479 1.158
4 0.0148 0.9292 0.0652 1.625 1.160 | Table 6. - Listing of Blade Element Performance (continued). NASA - TASK ! (ROTOR 2D) | | INLET AX.
VELOCITY
VSS.0850
VSS.273
V48.271
678.661 | EXIT AX. VELOCITY 684.408 669.453 595.060 708.313 | AXIAL
VFL.RATIO
0.903
0.906
0.773
1.044
1.413 | | | |--|--|--|---|--|---| | | TNLET ABS
MACH NO.
0.693
0.675
0.648 | EXTT ABS
HACH NO.
0.695
0.695
0.699
0.790 | FX1T REL
TANG. VEL
TANG. 284
770.951
569.004
440.101 | ABS. EX17
FLOW ANG.
32.324
33.224
43.783
37.878
39.993 | 6120
8313
8423
8423
985
985
00925 | | 4/27/1967 | IALET ARS
VFLOCITY
736.119
739.386
721.840
694.473
598.430 | EXIT ARS
VELOCITY
811.324
800.292
769.371
901.571 | IALET RFL
TANG. VFL
1333.995
1208.741
1087.630
955.396 | APS. INLPT
FLOW ANS.
00.
00. | | | SATE | ROTOR SPD 1333.995
1208.741
1087.630
955.396 | ROTOR SPC
AT EXIT
1319.345
1209.432
1100.976
991.062
883.296 | EXIT ABS
TANG, VEL
433.061
438.491
531.972
550.961 | | SURE RATI
BATIC EFF
TROPIC EF
LE WEIGHT F
WEIGHT F | | COMPRESSOR OUTPUT DATA
ENT PERFORMANCE RESULTS
EADING NUMBER 13 DA | INLET REL
VELOCITY
1573.619
1416.950
1305.370
1181.133 | EXIT REL.
VELOCITY
1120,806
1021,061
795,426
838,427
836,007 | INLET ABS
TANG. VEL
0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 101. TEMP
RATIO
1.192
1.176
1.178
1.178 | 33 | | Ε. Α
Ε. Ε. Α | INLET REL
MACH NO.
1.4233
1.3272
1.2208
1,1024
0.9262 | EXIT REL. HACH NO. 0.9603 0.8820 0.6818 0.7347 | CH1
0.3770
0.4233
0.4235
0.4139 | TOT. PRESS
RATIO
1.622
1.627
1.520
1.654 | FIXED INSTRUMENTATION | | N.A.S
BLADE
INT NUMBER 13 | INCID ANG
SUCT. SURF
11.306
-1.590
-1.401
-1.664 | REL. TURN
ANGLE
6.860
9.519
10.848
22.758 | ST. PRESS
RISE COEFF
0.28496
0.38496
0.39708
0.39708 | POLYTROPIC
EFFICIENCY
0.788A
0.8575
0.6990
0.8801 | 1,6191
0,8063
1,0191
1,0190
1,0190
1,050 | | 104 | INCID ANG
MN.CMBR.LN
2.404
3.160
4.309
4.902
4.958 | REL. DEV.
ANG. T.E.
2.144
7.4.301
9.541
8.404
10.365 | 01FFUSION
FACTOR
0.368
0.383
0.515
0.418 | ADIAPATIC
FFFICIENCY
0.7737
0.8473
0.6807
0.8713 | C • ii.
 | | | RFL, IMLET
FLUW ANG.
61.184
54.550
56.559
54.612
55.559 | RFL, EXIT
FLOW ANG,
52.324
49.031
45.711
31.854 | | |
TRAVERSE PRESSURE RA
TRAVERSE ADIAHATIO E
TRAVERSE POLYTOPPIO
FLOW COEFFICIENT L.E
FLOW COEFFICIENT T.E
PERCENT DESIGN SPEED | | | MADIAL
POSITION
1
2
3
5
5 | RADIAL
PUSITION
2
3
3
5
5 | RADIAL
POSITICN
2
2
3
3 | RADIAL
POSITICN
1
2
3
4
4 | | | - | | |------|---| | 8 | | | - | | | £ | | | 2 | | | 5 | | | Œ | | | 2 | | | Ξ | | | Ē | | | Ù | | | - 2 | | | F | | | 6 | | | 6 | | | TYPT | | | | | | Þ | | | Σ | | | C | Ì | | FROM | | | - | | | c | | | į. | | | Z | | | 7 | | | 2 | į | | 2 | | | 5 | | | Ë | ١ | | _ | | | S | | | 8 | | | Ε | | | | | | AME | | | 2 | ١ | | 7 | | | 4 | | | | | | | | | TOT, TEMP
RATIO | 1.188
1.178
1.171
1.167 | | |--------------------------|---|--| | TOT. PRESS
RATIO | 1,593
1,620
1,543
1,659 | | | LOSS
COEFFICIENT | 0, 1804
0, 1336
0, 1886
0, 0648
0, 1521 | | | ADIABATIC
EFFICIENCY | 0,7579
0,8300
0,7725
0,9325
0,8813 | | | TOT. PRESS
LOSS PARAM | 0.0404
0.0293
0.0399
0.0149
0.0342 | | | RADIAL
POSITION | 2 6 7 3 5 1 | | Table 6. - Listing of Blade Element Performance (continued). ### NASA - TASK ! (ROTOR 2D) N,A,S,A. COMPRESSOR OUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS INT NUMBER 14 PARADING NUMBER 14 DATE: 4/27/1967 | | INLET AX. | VELOCITY | 727,253 | 736.722 | 719.307 | 665,436 | 560.548 | EXIT AX. | VELOCITY | 670.422 | 642,455 | 590,875 | 671.144 | 712.740 | AXIAL | VEL RATIO | 0.922 | 0.872 | 0.766 | 0.979 | 1.272 | | | | | | | | | | | | | |--|------------|------------|------------------|----------|----------|----------|----------|-----------|-----------|----------|---------|---------|---------|---------|-----------|------------|----------|----------|----------|---------|---------|-------------|--------------|--------|--------|--------|--------|--------|-----------------------|-------------------------|---------------|-----------------------|--| | | INLET ABS | MACH NO. | 0.681 | 0.690 | 0.676 | 0.655 | 0.559 | | MACH NO. | 669.0 | 0.689 | 0.674 | 0.770 | 0.866 | EXIT REL | TANG. VEL | 845.059 | 727.480 | 533,753 | 418.753 | 228,460 | ARC EXIT | FLOW AND | 35,306 | 36.902 | 45.859 | 40.474 | 42,590 | 850 | 654 | 9 | 0932 | | | 4/27/1967 | INLET ABS | VELOCITY | 729.502 | 736.834 | 722.881 | 701.406 | 605.428 | EXIT ABS | VELOCITY | 822,852 | 803,430 | 791.525 | 886,111 | 982.893 | INLET RFL | TANG. VEL | 1334.500 | 1209,199 | 1088.041 | 955,758 | 805.212 | ABS. INI ET | | | | • | • | ٥. | a (| _ | LOW # 225.7 | | | | TE , | ROTOR SPD | AT INLET | 1334,500 | 1209.199 | 1088.041 | 955,758 | 805,212 | | | | | | | 883.631 | | TANG.VEL | 474.785 | 482,410 | 547,640 | 572,685 | 655,171 | | | | | | | | PRESSURE RATIO | SLYTROPIC EFF | DZZLF WEIGHT | FLOW/NOZ. WEIGHT FLOI | | | BLADE ELEMENT PERFORMANCE RESULTS
14 READING NUMBER 14 DA | INLET REL | VELOCITY | 1520,876 | 1416.011 | 1306.289 | 1185.514 | 1007.427 | EXIT REL. | VELOCITY | 1079,717 | 970,570 | 747,586 | 795,348 | 767,479 | INLET ABS | TANG, VEL | 0 | • | • | 0 | • 0 | TOT. TEMP | • | 1,213 | 1,193 | 1.206 | 1.189 | 1.189 | MENTATION P | ŧ ū. |) Z | WEIGHT FLOW/NO | | | E ELEMENT PEF
READING | INCET REL | MACH NO. | 1.4193 | 1.3255 | 1.2219 | 1.1063 | 0.9302 | EXIT REL. | MACH NO. | 0.9172 | 0.8319 | 0.6538 | n, 6912 | 0.6766 | CH1 | | 0.4101 | 0.4697 | 0.4899 | 0.4977 | 0.3023 | TOT. PRESS | AT10 | 1.701 | 1.707 | 1.635 | 1.724 | 1.699 | FIXED INSTRUMENTATION | |)
()
() | T.E. CHECK | | | NT NUMBER | INCID ANG | SUCT. SURF | -1.139 | -1,492 | -1,429 | -1.927 | -2.724 | REL. TURN | ANGLE | 9,838 | 10.096 | 12,436 | 22,392 | 37,384 | ST. PRESS | RISE COFFF | 0,29669 | 0.37912 | 0.42663 | 0.47981 | 0,38441 | POLYTROPIC | EFF 1C1 ENCY | 6,7853 | 0,8665 | 0.7501 | 0.9005 | 0.8787 | | 0.8320 | | _ | | | 104 | INCID ANG | MN CMBR.LN | 2.631 | 3.258 | 4,281 | 4.643 | 4.556 | PEL, DEV. | ANG. T.E. | 1.394 | 3.521 | 7.926 | 8.512 | 11.993 | DIFFUSION | FACTOR | 0.404 | 0.429 | 0.545 | 0.462 | | ADIABATIC | FFFICIENCY | 0,7687 | 0.8560 | 0.7323 | 0.8926 | 0,8693 | PRESSURE RATIO = | - | ENT L.E. | | | | | RFL, INLET | FLUM ANG. | 61,411 | 58.64E | 56.531 | 54.353 | 55.156 | RFL. FXIT | FLOW ANG. | 51.574 | 48.551 | 44.096 | 31.962 | 17.773 | | | | | | | | | | | | | | | TRAVERSE PRES | TRAVERSE POLYTROPIC EFF | FLOW CORFFICE | PERCENT DESIGN | | | | RADIAL | POSITION | , , 1 | ~ | m | 4 | ľΩ | RADIAL | POSITION | | ~ | m | 4 | Z. | HADIAL | PUSITION | | ~ | m | 4 | εc | RADIAL | POSITION | w-1 | ~ | m | 4 | īv | | | | | | ### PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | TOT, TEMP
RATIO | 1,207 | 1,192 | 1,187 | 1,176 | 1,175 | |--------------------------|----------|--------|--------|--------|--------| | TOT. PRESS
RATIO | 1,669 | 1,701 | 1.649 | 1,721 | 1,685 | | LOSS
COEFFICIENT | 0,1939 | 0,1220 | 0,1596 | 0.0462 | 0,1015 | | ADIABATIC
EFFICIENCY | 0,7601 | 0.8548 | 0.8226 | 0,9539 | 0,9207 | | TOT. PRESS
LOSS PARAM | 0.0442 | 0.0270 | 0.0347 | 0.0106 | 0.0226 | | RADIAL
POSITION | - | 2 | m | 4 | 2 | Table 6. - Listing of Blade Element Performance (continued). NASA - TASK I (RNTOR 2D) | | INLET AX.
VELOCHTV
725.409
735.812
742.294
681.380 | FX - X - X - X - X - X - X - X - X - X - | AXIAL
CFL.RATIO
0.891
0.346
0.773
1.965 | | |--|---|--|---|---| | | INLET ABS
MACH NO.
0.679
0.670
0.670
0.651 | A A D C A A D C A A D C A A D C A A D C C D C
C D C C C C | AXIT REL
1ANG. VEL
1902. 620
584.827
398.905
238.475
238.741
100.121
100.121
100.121
100.121
100.121
100.121 | 1.7%#0
0.8725
0.8%21
0.9%36
1.00432 | | 4/27/1967 | INLET ARS
VELOCITY
727.652
735.924
715.834
697.256 | EXIT A95
VELOCITY
834.320
813.500
805.609
888.106 | INLFT REL
TANG. VFL
1332.907
1207.756
1085.743
954.617
804.251
APS.INLFT
FLOW ANG.
0. | и и и и и и и и и и и и и и и и и и и | | S
ATE | ROTOR SPD
AT INLET
1332-907
1207.756
1086.743
954.617
804.251 | POTOR SPD
AT EXIT
1318.269
1208.445
1100.078
990.254
882.576 | EXIT ARS
TANG.VFL
525.649
523.618
591.349
648.841 | 10N PRESSURF RATIC
ADIABATIC EFF.
POLYTROPIC FFF.
NOZZLE WEIGHT FIOW
FLOW/NOZ. WEIGHT FLOW | | S.A. COMPRESSOR OUTPUT DATA
ELEMENT PERFORMANCE RESULTS
READING NUMBER 15 DA | INLET REL
VELOCITY
1518.591
1414.305
1301.317
1182.142 | EXIT REL.
VELNCITY
1023,733
925,524
752,569
773,409 | INLET ABS
TANG. VEL
0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 33 | | N.A.S.A. COMPRESSOR OUTPUT DATA
LADE ELEMENT PERFORMANCE RESULT
15 READING NUMBER 15 D | 12LET REL
MACH NO.
1.4179
1.3227
1.2177
1.1037 | EXIT REL.
HACH NO.
0.4631
0.7890
0.6399
0.6702 | CH1 0.4425 0.5001 0.5256 0.5371 0.3938 TOT. PHESS 1.766 1.768 1.777 1.716 | FIXED INSTRUMENTATION L.E. CHECK WEIGHT FLO T.E. CHECK WEIGHT FLO | | N.A.S
BLADE
NT NUMBER 15 | INCID ANG
SUCT.SUPF
-1.106
-1.491
-1.202
-1.798
-2.374 | PEL, TURN
ANGLE
10.653
10.952
13.799
23.243 | ST. PRESS
81SE COEFF
0.32627
0.40914
0.46310
0.52081
0.47654
POLYTROPIC
FFICIENCY
0.6667
0.9103
0.8792 | 1.7526
0.8232
0.8366
0.950 | | 100 | INCID ANG
MN.CMBP.LN
2.564
3.259
4.568
4.772
4.772 | PFL. DEV. 0.425 0.425 0.425 0.425 0.425 0.425 0.489 0.480 0.489 0.489 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0. | FACTOR 6.450 N FELTOR 6.450 N | PPESSURE BATTO = ANIMARATIC EFF. = POLYTROFIC EFF. = FIGIENT L.E. = FIGIENT T.E. = SIGN SPEED | | | ###################################### | FUGS AND | | TRAVERSE PRESSURE PATTO
TRAVERSE ANDABATO EFF
TRAVERSE POLYTROFIC EFF
FLOW COEFFICIENT L.E.
FLOW CHEFFICIENT T.E.
PERCENT DESIGN SPEED | | | HADIAL
POSTTIOM
1
2
3
4
4 | 0.00 F P P P P P P P P P P P P P P P P P P | 7.80 T T T T T T T T T T T T T T T T T T T | | TOT. PRESS ADIABATIC LOSS TOT. PRESS TOT. TEMP LOSS PARAM EFFICIENCY COEFFICIENT RATIO RATIO 0.0471 0.7634 0.2030 1.735 1.223 0.0254 0.8500 0.1130 1.765 1.202 0.0314 0.8500 0.1417 1.715 1.196 0.0060 0.9751 0.0258 1.767 1.181 0.0131 0.9537 0.0592 1.699 1.171 RADIAL POSITION Table 6. - Listing of Blade Element Performance (continued). NASA - TASK 1 (RNTOR 2D) N.A.S.A. COMPRESSOR OUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS NT NUMBER 16 NEADING NUMBER 16 DATE 4/27/1967 | | INLET AX. | VELACITY | 715.395 | 730.285 | 746.687 | 683,342 | 596.091 | FXIT AX. | VFLACITY | 624, R97 | 609.419 | 536.980 | 637.156 | 626.506 | AXIAL | VFL.RATIO | 0.873 | 0.834 | 0.749 | 0.932 | 1.127 | | | | | | | | | | | |--------------------------|------------|--------------|----------|------------------|----------|----------|----------|-------------|---------------------|-------------------------|----------|--------------|---------|---------|---|------------|----------|----------|----------|---------------|---------|------------|-------------------|--------|--------|--------|--------|--------|------------------------------|--|--| | | INLET ABS | MACH NO. | 0.668 | 0.683 | 0.673 | 0.653 | 0.554 | FXIT ARS | MACH NO. | 0.710 | 0.696 | 0.680 | 0.759 | 0.797 | FXIT REL | ' TANG.VEL | 749.528 | 662.530 | 505,383 | 390,339 | 233,498 | ABS, EXIT | FLOW ANG. | 42.410 | 41.952 | 48.002 | 43.349 | 46.075 | A20 | \$ \$ | .9841B
.99563 | | 1967 | INLET ARS | VELOCITY | 717.607 | 730,397 | 720.249 | 699.264 | 600.614 | EXII ARS | VELOCITY | 847.478 | 819,456 | 803.024 | 879.6R5 | 915.359 | INLET RFL | TANG. VFL | 1334,990 | 1209,643 | 1088.441 | 956.108 | 805.547 | P.S. | FLOW ANG. | | 9 | ċ | 0. | | | H H | H H | | DATE 4/27/1967 | POTOR SPB. | AT INLFT | 1334,990 | 1209.643 | 1088,441 | 956,108 | 805.507 | ROTOR SPD | AT EXIT | 1320,329 | 1210.334 | 1101.797 | 991,801 | 883,955 | FXIT ARS | TANG, VFL | 570,841 | 547,804 | 506,414 | 601.462 | 650,457 | | | | | | | | PRESSURE RATICADIABATIC EFF. | JOZZLE WEIGHT | r FLOWANDZ, WEIGHT FLOW
r FLOWANDZ, WEIGHT FLOW | | NUMBER 16 | INLET REL | VELOCITY | 1515,638 | 1413,052 | 1305,167 | 1184,531 | 1004,778 | EYIT REL. | VELOCITY | 976.831 | 900,203 | 737,937 | 751.301 | 685.061 | INLET ABS | TANG, VEL | | 0 | • | 0 | .0 | TOT. TEMP | RATIO | 1,251 | 1.218 | 1.222 | 1.204 | 1.194 | UMENTATION P | n 2 | WEIGHT FLOW/N | | NUMBER 16 READING NUMBER | INLET REL | MACH NO. | 1,4113 | 1.3216 | 1,2202 | 1.1659 | 0.9272 | EXIT REL. | HOW HOW | 0.8181 | 0.7644 | 0.5248 | 3.6483 | 0.5965 | C+1 | | 1,4627 | 0,5259 | 0.5654 | 0.5746 | 0.4601 | TOT, PRESS | RATIO | 1.438 | 1,627 | 1.761 | 1.409 | 1.731 | FIXED INSTRUMENTATION | | L.E. CHECK | | POINT NUMBER 16 | INCID ANG | SUCT, SUPF | -0.736 | -1,260 | -1,323 | -1,834 | -2,500 | REL. TURN | ANGLE | 11.633 | 11.489 | 13,373 | 22.953 | 34.940 | ST, PRESS | RISE COEFF | 0.34570 | 0.43495 | 0.50383 | 0.55994 | 0.54339 | POLYTRUPIC | EFFICIENCY | 0,7782 | 0.8729 | 0.8061 | 0,9135 | 0.8879 | = 1.7989
= 0.8297 | | = n.950
= 100 | | 10d | TACIP ANG | MY. CYBR. LN | 3.734 | 764.8 | 4.387 | 4.736 | 4.780 | REL. Drv. | 4 . F . 6 . 4 . F . | () () () () () () | 2.761 | 7.094 | R 40.8 | 14.460 | PIFFUSION | FACTOR | 0.493 | £67.9 | 6.574 | 16 TO 16 TO 1 | 0.477 | APIAFATIC | FFF1C1ENCY | 0.7565 | 0.8616 | 0.7961 | 5506*1 | 5à2±°1 | 6 • I | L | | | | THINI LAN | FI ON ARE. | 61.814 | ייבר
המני אני | 54.43 | 24.446 | 55.450 | REL. FXIT | F1 (14) A %.C | 50.181 | 4.7 3.6 | 43.264 | 54.443 | 20.440 | | | | | | | | ~ | | | | | | | TRAVERSE PPE
TRAVERSE ADI | TRAVERSE POLYTROPIC E
FLOW COEFFICIENT LIE: | FLOW COEFFICIENT 1.E. PERCENT DESIGN SPEED | | | £ 0 1 4 1 | FOILISH | · · | ۰ ۸ | m | 4 | 'n | A A D I A L | ROLLINGA | | ۰ ۸ | : ~ : | 4 | S. | \
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | F0111574 | | | ₩) | 4 | 5 | - ADIAL | Post11504 | | ~ | ю | 4 | 5 | | | | ## PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | | 247 | rakamelens belekmineb from fikeb insinomenialion | בת נצטע נועבת זא | O LAUMEN LA LIUN | | |--------------------|--------------------------|--|---------------------|---------------------|--------------------| | RADIAL
POSITION | TOT. PRESS
LOSS PARAM | ADIABATIC
EFFICIENCY | LOSS
COEFFICIENT | TOT. PRESS
RATIO | TOT, TEMP
RATIO | | 1 | 0.0504 | 0.7620 | 0.2147 | 1,789 | 1,237 | | 2 | 0.0243 | 0.8831 | 0,1072 | 1.820 | 1,211 | | 3 | 0.0300 | 0.8608 | 0.1362 | 1,765 | 1,205 | | 4 | 0.0064 | 0.9740 | 0,0276 | 1,800 | 1,188 | | 2 | 0.0223 | 0.9231 | 0,1018 | 1,716 | 1,181 | Table 6. - Listing of Blade Element Performance (continued). NASA - TASK 1 (ROTOR 2D) | | 1NLFT AX.
VPLOC11Y
746.927
730.167
708.770
669.948
849.361 | FX:1 AX. | AXIAL
VFL.RATIO
0.857
0.759
0.939
1.118 | | |--|--|--
---|--| | | INLET ABS
MACH NO.
0.671
0.683
0.666
0.540 | FX11 ABS
MACH NO.
0.703
0.701
0.689
0.762 | # # # # # # # # # # # # # # # # # # # | 1,805n
0,8415
0,8410
4,31
0,98538
0,98531 | | 4727/1967 | 1 IALET ARS
VFLOCITY
719.144
730.278
712.292
685.558
593.345 | EXIT ARS
VELNCITY
R66.761
R76.261
813.051
882.012 | 1 A N B T A A B A B A B A B A B A B A B A B A | | | S
A T E | ROTOR SPD
AT INLFT
1333.451
1208.249
1087.186
955.006 | AT EXIT
1318.807
1208.939
1100.527
990.658 | EXIT ARS
TANG.VEL
609.784
562.209
617.542
613.689
652.439 | 10N PRESSURE RATIC
ADIABATIC EFF.
POLYTROPIC FFF.
NOZZLE WEIGHT FLOW
FLOW/NOZ. WEIGHT FLOW | | N.A.S.A. COMPRESSOR OUTPUT DATA LADE ELEMENT PERFORMANCE RESULTS 17 DA | INLFT REL
VFLNCITY
1515.012
1411.797
1299.744
1175.596 | EXIT REL. VELNCITY 919.230 885.938 731.423 737.182 | INLET ARS
TANG. VEL
0.
0.
0.
0.
1.268
1.223
1.223
1.223
1.225 | UHENTATION PARTICULARION PROPERTIES AND PARTICULARION PROPERTY PLONGY NATIONAL PROPERTY PROPE | | S.A. COMPRES
E ELEMENT PER
PEADING | INLET REL
MACH NO.
1.4127
1.3205
1.2156
1.0969 | FXIT REL.
MACH NO.
0.7835
0.7515
0.5202
1.5367 | CH1
CH2
CH2
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3 | FIXED INSTRUMENTATION L.E. CHECK WEIGHT FLO T.E. CHECK WEIGHT FLO | | B
NUMBER | INCID ANG
SUCT. SUPF
-0.515
-1.285
-1.062
-1.336
-2.205 | PEL. TURN
12.650
11.966
14.482
24.006
35.096 | ST. PRESS
HISE CCFFF
0.35724
0.56994
0.56499
0.56499
POLYTRUPIC
EFFICIENCY
0.8823
0.8823
0.8164
0.88664 | 1.H264
0.6299
0.H437
0.950 | | FNICA | T N C C C C B D A A A A A A A A A A A A A A A A A A | DEL. DEV. ANG. 1.6. 1.794 6.246 7.497 | PIFFUSION
C. 527
C. 580
C. 580
C. 580
O. 487
AULAPATIC
FFI DIFNOY
C. 7423
C. 7 | PRESSURE DATIONS ADILMATIC EFF. SPOLYTROPIC FFF. SPICIFIC FFF. SPICIN L.S. SPICIN SPEED | | | 941. JNLFT
+101. ANG.
57. ASS
56. 898
54. 950
57. 655 | FE. FX1T
FLOV ANG.
40.046
46.887
40.416
50.943 | | TRAVERSE ADTARATIC EFF. THAVERSE ADTARATIC EFF. THAVERSE POLYTROPIC FFF. ELDW COEFFICIENT L.S. ELDW COFFFICIENT L.S. ELDW COFFFICIENT T.E. | | | KADIAL
PUSITION
2
2
8
8 | AADIAL
FOSITION
1
2
3
3
4
5 | A A D I A L L L L L L L L L L L L L L L L L L | | | INSTRUMENTATION | |-----------------| | FIXED | | FROM | | DETERMINED | | PARAMETERS | | TOT. TEMP
RATIO | 1,245 | 1,217 | 1,209 | 1,190 | 1,173 | |--------------------------|--------|--------|--------|--------|--------| | TOT. PRESS
RATIO | 1,823 | 1,851 | 1,792 | 1.814 | 1,127 | | LOSS
COEFFICIENT | 0.2182 | 0,1052 | 0.1304 | 0.0278 | 0.0321 | | ADIABATIC
EFFICIENCY | 0.7639 | 0.8877 | 0.8695 | 0,9744 | 0,9753 | | TOT. PRESS
LOSS PARAM | 0.0524 | 0.0241 | 0.0292 | 0,0065 | 0.0070 | | RADIAL
POSITION | 1 | 2 | 3 | ~7 | 5 | Table 6. - Listing of Blade Element Performance (continued), NASA - 1ASK 1 (ROTOR 2D) N.A.S.A. COMPRESSOR NUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS POINT NUMBER 18 READING NUMBER 18 DATE. 4/27/1967 | | S INLET AX. | | | | | | 925, A30 | | | | | | | 866.775 | AXIAL | . > | | | | | 1.648 | | | • | | | | | | | | | |--|-------------|--------------|----------|----------|----------|----------|----------|-----------|------------|----------|----------|-------------|---------|----------|-----------|------------|-----------|----------|---------|----------|----------|------------|-------------|-------------|--------|------------|--------|--------|-----------------------|-------------------------|----------------------|--| | | INLET AB | MACH NO | 0.630 | 0.636 | 0.627 | 0.609 | 0.523 | EXIT ABS | NATION | 0.690 | 0.643 | 0.605 | 0.792 | 0.957 | EXIT RFL | TANG. VFL | 979.453 | 847.436 | 692.980 | 491.308 | 244,487 | ABS, FXIT | FLOW ANG | 15.847 | 20,036 | 25.961 | 27,254 | 32,435 | 1180 | 1318 | 0.8382 | 0.99197 | | 4/27/1967 | INLET ARS | VELOCITY | 678.312 | 683,340 | 673.626 | 655,142 | 567.931 | EXIT ABS | | 765,093 | 719,507 | 682.2N7 | 880.922 | 1047.545 | INLET REL | TANG. VFL | 1201.0041 | 1088.318 | 979.272 | A 60.243 | 724.747 | ARS, INLET | FLOW AND | | | .0 | 9. | • 0 | e:
e-f | H . | 11 / | 1 H H
8 | | υź | ROTOR SPD | AT INLET | 1201.094 | 1088,318 | 979.272 | 860,213 | 724.717 | ROTOR SPB | AT FXIT | 1187,903 | 10AB.940 | 991.289 | 892,326 | 795.296 | EXIT ARS | TANG. VEL | 208.450 | 246.504 | 298.308 | 401.018 | 550.809 | | | | | | | | PRESSURF RATIC | ADIABATIC FFF. | | FLOW/NOZ. WEIGHT FLOW
FLOW/NOZ. WEIGHT FLOW | | NUMBER 18 | INLET REL | VELOCITY | 1379,396 | 1285.064 | 1188.590 | 1081,297 | 920,739 | EXIT REL. | VFLACITY | 1225,253 | 10R0.104 | 925.549 | 925.522 | 923,966 | INLET ABS | TANG. VEL | 0 | • | • | • | 0 | - | | | | | | | | | | FLOW | | BLADE ELEGEN! FERFURANCE RESULTS 3 18 MEADING
NUMBER 18 DA | INCET REC | MACH NO. | 1.2802 | 1.1958 | 1,1061 | 1.0044 | 0.8474 | EXIT REL. | PACH NO. | 1.1046 | 1.9647 | 0.4204 | 0.6324 | G. H445 | CH1 | | 0.1086 | 0.2235 | 0.2316 | 0.2180 | -0.1326 | TUT. PRESS | RATIO . | 1.248 | 1.250 | 1.208 | 4.415 | 1.492 | FIXED INSTRUMENTATION | | | T.E. CHECK WEIGHT | | NT NUMBER | INCID ANG | SUCT. SUPF | -1.930 | -2.260 | -2.351 | 2.940 | -3.843 | REL. TURM | ANGLE | 7.481 | 6.622 | 0.00.7 | 21.085 | 36.245 | ST, PRESS | RISE COFFF | 0.16936 | 0.17227 | 0.19925 | 0.22259 | -0.00507 | POLYTROPIC | EFF 1CIENCY | 6.8635 | C.762A | C.5%.5 | 0.8869 | 6.8839 | | | | 0.450 | | 104 | INCID ANG | MY. CHBE. LN | 1.840 | 2.490 | 3.259 | 3.530 | 3.437 | PEL. DEV. | ANG. T.E. | 5.059 | 6.228 | 12.349 | • | 26.5 | PIFFUSICN | FACTOP | (.167 | 0.224 | 850.0 | 6.246 | 0.143 | ADIABATIC | FFFICIERCY | (i. c 6 4 4 | 0.7549 | 6,5736 | 0.981% | 2772 | PPESSUPE PAT'0 = | AHATIC EFF. = | | | | | KFL, INLET | FLOW ANG. | 964.86 | 57. AFC | 56.409 | 53.340 | 54.037 | PEL. FXIT | Fills And. | 53,139 | 53.058 | 2 £ 7 . 4 4 | 32.256 | 15.752 | | | | | | | | | | | | | | | TRAVERSE PPE | TRAVERSE APIAHATIC EFF. | FLOS CORFETCIANT LES | FLOW COPFFICIENT T.E. PERCENT DESIGN SPEED | | | RADIAL | POSITION | - | ~ | m | 4 | r | KADIAL | POSITION | - | ~ | ™ | 4 | ſΛ | HADIAL | POSITION | -1 | α, | m | 4 | r | RADIAL | POSITION | . . | ~ | ≈ 0 | 4 | ır | | | | | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | ā | | | | | | |--------------------------|--------|--------|--------|--------|--------| | TOT. TEMP
RATIO | 1,079 | 1,093 | 1.090 | 1,109 | 1 128 | | TOT, PRESS
RATIO | 1,251 | 1,259 | 1,217 | 1,407 | 1.484 | | LOSS | 0.0672 | 0,1312 | 0,1881 | 0.0424 | 0.0769 | | ADIABATIC
EFFICIENCY | 0.8306 | 0.7340 | 0.6423 | 0,9425 | 0.9308 | | TOT, PRESS
LOSS PARAM | 0.0148 | 0.0275 | 0.0378 | 0,0097 | 0.0173 | | RADIAL
POSITION | ~ | 2 | 6 | 7 | 2 | Table 6. - Listing of Blade Element Performance (continued). NASA TASK I (ROTOR 2D) N.A.S.A. COMPRESSOR NUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS | | | | | | 644 072 | 640.47 | 518.370 |) i | * * * * * * * * * * * * * * * * * * * | VELOCITY | 630,121 | 612,258 | 562.583 | 648.605 | 780.400 | - | | VEL, KA110 | 106.0 | 404.0 | 0.843 | 1.026 | 1,351 | | | | | | | | | | | | | | |--|------------|------------|----------|----------|----------|----------|---------|-----------|---------------------------------------|-----------|----------|-------------|----------|------------|---------|-----------|------------|---|-------------|----------|---------------------------------------|---------|---------|-------------|-------------------|--------|--------|----------|--------|--------|-------------------------|-----|----------------|--------------|----------------------|-----------------------| | | INIET ABS | Z Z Z Z Z | 0.630 | 0.637 | 50.0 | 20.0 | 0.515 | 204 1170 | | MACH NO. | 0.629 | 0.624 | 0.626 | 0.709 | 0.816 | CX1T DE | | 7 4 7 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | /10.020. | 717,121 | 539,358 | 421.672 | 227,022 | ABS. EXTT | 24 | 29.707 | 11 27B | 3.8.7.82 | 15 072 | 39.059 | 0 | | 086 | 0.9038 | 1758 | 1,98767 | | 1967 | INLET ARS | } | 678,645 | 685.009 | 670.287 | 646.083 | 559,873 | EXIT ABS | | * PLOCIIT | 726,805 | 716,398 | 722,204 | 805,380 | 917,298 | TALFT PE | 1110 | 100 TEL | C 20 TO 2 T | 1000.437 | 979,380 | 860,307 | 724,796 | ABS. TNI FT | PI ON ANG | .0 | | | ·c | | | | # I | | | | | :ULTS .
DATE 4/27/1967 | ROTOR SPD | AT INI FT | 1201,225 | 1088.437 | 979,380 | 860.307 | 724,796 | AGE SOTOR | | A - m | 1188,033 | 1089.059 | 991,397 | 892,423 | 795,383 | EXIT ARS | TANG VE | 150 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.00 | 011.400 | 452,039 | 470,751 | 568,361 | | | | | | | | DRESSIBE BATTO | | AUIABATIC EFF. | MONTENDERCHE | 07 WEIGHT FLO | FLOW/NOZ, WEIGHT FLOW | | BLADE ELEMENT PERFORMANCE RESULTS ? 19 READING NUMBFR 19 DA [*] | INLET REL | VFLACITY | 1379,674 | 1286,053 | 1186,789 | 1076,436 | 915,853 | EXIT REL. | > L = 00 - U > | | 10.1.01 | 747.748 | 779.920 | 777,713 | 754,944 | INLET ABS | TANC VE | | | | -
- | • | • | TOT. TEMP | RATIO | 1,148 | 1.136 | 1.152 | 1.142 | 1,151 | FIXED INSTRUMENTATION B | | ≪ (| 1 2 | WEIGHT FLOWIN | CHECK WEIGHT FLOW/N | | DE ELEMENT PI
9 READIN | INCET REC | MACH NO. | 1.2798 | 1,1962 | 1.1034 | 1666'0 | 0.8418 | FXIT REL. | I CN HUN | 60000 | 70000 | 0,000 | 0.6760 | 0.6846 | 0.6713 | CH1 | | 0.3874 | 0.4351 | 45.40 | 0000 | 0.4400 | 0.2530 | TOT, PRESS | RATIO | 1,494 | 1,494 | 1,465 | 1,527 | 1,554 | FIXED INSTE | • | | | L.E. CHECK | T.E. CHECK | | MT NUNRE | INCID ANG | SUCT.SURF | -1,939 | -2.320 | -2.215 | -2.593 | -3,452 | REL, TURN | ANG! F | 7.86 | 00.0 | 600.0 | 11,952 | ټ | 36.469 | ST. PRESS | RISE COEFF | 0.29120 | 0.36026 | 0.4004 | 0.400.0 | 0.44040 | 0.34235 | POLYTROPIC | EFFICIENCY | 0,8323 | 629610 | 0,7729 | 0.9128 | 0.9002 | 1.5048 | | | | | 06 | | Pol | INCID ANG | MN.CMBR.LN | 1,831 | 2,430 | 3,495 | 3.977 | 3.828 | REL, DEV, | ANG. T.F. | 2.566 | 000 | 0 1 1 1 | 7.623 | 9.579 | 12,179 | DIFFUSION | FACTOR | 0.340 | 0.164 | 0.450 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1800 | 0.327 | | | 0,8225 | | | 0,9074 | 0,8937 | PRESSURE RATIO | 351 | | | | | | | REL, INLET | FLOW ANG. | 60.611 | 57.820 | 55.745 | 23.687 | 54.428 | REL, EXIT | FLOW ANG. | 72.746 | 0 7 10 7 | 0 T C - 6 t | 43.793 | ٠. | 17.959 | | | | | | | | | | | | | | | | TRAVERSE PRE | | | FLOW COEFFIC | FLOW COEFFICIENT T.E | PERCENT DESIGN | | | HADIAL | POSITION | -1 | 2 | EO. | 4 | 5 | MABIAL | POSTION | | | , | o | 4 1 | ī | HADIAL | POS1710N | | 2 | i #*7 | > 🔻 | | u | BADIAL | POS 1 7 1 0 N | | 2 | m | 4 | īU | | | | | | | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | AP - | | _ | | | | |--------------------------|--------|--------|--------|--------|--------| | TOT. TEMP
RATIO | 1.145 | 1.139 | 1.139 | 1, 133 | 1, 141 | | TOT. PRESS
RATIO | 1.491 | 1,502 | 1,478 | 1,531 | 1,554 | | LOSS
COEFFICIENT | 0,1126 | 0,0793 | 0,1178 | 0.0204 | 0.0542 | | ADIABATIC
EFFICIENCY | 0.8335 | 0,8892 | 0.8510 | 0.9771 | 0,9555 | | TOT, PRESS
LOSS PARAM | 0,0250 | 0.0172 | 0.0258 | 0,0046 | 0.0121 | | RADIAL
POSITION | 1 | 2 | Э | 7 | 5 | Table 6. - Listing of Blade Element Performance (continued). N.A.S.A. COMPRESSOR BUTPUT DATA | | INLET AX. | VELOCITY | 671.448 | 678.759 | 669,071 | 637.848 | 526.728 | EXTT AX. | - | 626.881 | 693,632 | 542.839 | 626,219 | 652.727 | AXTAL | VE PATIO | 0.934 | 0.889 | 0.841 | 0.982 | 1.239 | | | | | | | | | | |---|------------|----------------|----------|----------|----------|----------|---------|-----------|------------|----------|----------|---------|---------|---------|-----------|-------------|-----------------------|----------|---------|---------|---------|-------------|------------|-----------------|--------|------------|--------|--------|--|----------------------| | | INLET ABS | MACH NO. | 0.624 | 0.631 | 0.625 | 0.606 | 0.524 | EXIT ABS | MACH NO. | 0.641 | 0.634 | 0.638 | 0.704 | 0.778 | EXIT REL | TANG VE | 787.223 | 676.899 | 515,678 | 395,534 | 225.675 | ABS.FXIT | | 32,598 | 34,330 | 40.209 | 38,434 | 41.117 | 1.5%60
0.8996
0.90%6
4.88 | 99548 | | 1967 | INLET ARS | VELACITY | 673,524 | 678.842 | 672,305 | 652,710 | 568,900 | EXIT ABS | VELOCITY | 745,390 | 730,978 | 737.576 | 803.128 | 880.259 | INLET REL | TANG | 1201.297 | 1088,502 | 979.438 | 860,358 | 724.839 | ABS, INLET | FI OW ANG. | ٦. | ů. | | · | | лиил
100.00. | | | ULTS
DATE 4/27/1967 | ROTOR SPE | AT INLET | 1201.297 | 1088.502 | 979,438 | 860.358 | 724,839 | ROTOR SPD | AT EXIT | 1188.104 | 1089.124 | 991.457 | 892,477 | 795.431 | FXIT ABS | TANG VE | 400.881 | 412,225 | 475.779 | 496.942 | 569,756 | , | | | | | | | 10N PRESSURE RATIC
ADIABATIC EFF.
POLYTROPIC EFF.
NOZZLE WEIGHT FLOW | FLOW/NOZ, WETGHT FLO | | ELEMENT PERFORMANCE RESULTS
READING NUMBER 20 DA | INLET REL | VELOCITY | 1377,225 | 1282.845 | 11AB,029 | 1079,929 | 921,433 | EXIT REL. | VELOCITY | 1007,284 | 906,968 | 743,922 | 744,654 | 707,928 | INLET ABS | TAND. VE. | 0 | | . 0 | | 0 | TOT. TEMP | RATIO | 1,165 | 1,151 | 1.162 | 1,151 | 1,153 | UMENTATION B | | | E ELEMENT PEI
READING | INCET REC | MACH NO. | 1.2763 | 1,1929 | 1.1057 | 1.0028 | 0,8490 | EXIT REL. | MACH NO. | 9.8559 | 0.7867 | 0.6603 | 0.6525 | 0.6259 | CH1 | | 0.4196 | 0.4694 | 0.4988 | 0.5050 | 0.3553 | TOT. PRESS | RATIO | 1.562 | 1.556 | 1.530 | 1.568 | 1.555 | ж
Ш | T.E. CHECK | | BLADE
POINT NUMBER 20 | INCID ANG | SUCT. SURF | -1.752 | -2.085 | -2.298 | -2.832 | -3.882 | AEL, TURN | AMGLE | 9.329 | 9.779 | 13.166 | 21,170 | 34.922 | ST. PRESS | RISE CORFF | 0.32079 | 0.39364 | 0.44803 | 0,49375 | 0.44001 | POLYTRUPIC | EFF101ENCY | 0.8352 | 0.9004 | 0.8107 | 0.9139 | 0.9034 | 1.5564
1.0564
0.8697
1.980 | | | [Úd | INCID ANG | 4N. C. 18R. LN | 2.313 | 2.564 | 3.412 | 3.739 | 3.395 | REL, DEV. | ANG. T.E. | 1.289 | 3.245 | 6.326 | 8,327 | 13,292 | DIFFUSION | FALL TOR | 9.375 | 6.401 | 0.479 | 5.437 | 0.393 | ADIABATIC | EFF101EUCY | 0.9245 | 0.3940 | 0.464.0 | 0.7136 | 0.3973 | | | | | MEL, INLET | Floor 446. | 94.7.00 | 59,054 | 55.662 | 53.448 | 566120 | TIXE THE | | 51,409 | 44.275 | 40.446 | 17.9.77 | 13.072 | | | | | | | | | | | | | | | TAAVERSE POESSURE BATTO
TAAVERSE ANTAHATTO EFF.
TOAVERSE POLYTROPIO EFF
FLOA COPFFICIENT T.E. | PERCENT DESIGN SPEED | | | MADIAL | P031110% | | C): | ~ | 4 | r | HADIAL | P.0.5111.0 | | . ~ | . ~ | 4 | ιc | MADIAL | 10 11 17 CO | -
-
-
-
- | ٠ ۸ | · **: | 4 | 35 | H A D I A L | P0811104 | - -1 | ~ | . € | 4 | æ. | | | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | | TOT.
TEMP
RATIO | 1,162 | 1,149 | 1,149 | 1,139 | 1,146 | |---|--------------------------|--------|--------|--------|--------|--------| | - | TOT. PRESS
RATIO | 1,553 | 1,560 | 1.538 | 1,565 | 1,564 | | | LOSS | 0,1300 | 0.0708 | 0.1043 | 0.0190 | 0.0845 | | | ADIABATIC
EFFICIENCY | 0.8255 | 0.9077 | 0,8763 | 0,9795 | 0,9321 | | | TOT. PRESS
LOSS PARAM | 0.0297 | 0.0158 | 0.0233 | 0.0044 | 0.0187 | | | RADIAL
POSITION | _ | 2 | 3 | 4 | 2 | Table 6. - Listing of Blade Element Performance (continued). ### NASA - TASK I (ROTOR 2D) AXIAL VFL.RATIO 1.070 1.044 1.045 1.192 1.192 EXIT AX. VFLOCITY AIL.729 AI2.473 AIG.650 AM4.799 VELOCITY VELOCITY 384.773 395.118 392.904 381.395 MACH ABS MACH NO. 0.449 0.454 0.458 0.458 GXIT REL TANG.VEL 540.615 460.647 345.755 258.349 ABS. EXIT FLOW ANG. 16,225 19,339 24,294 27,599 32,850 123,921 1,1150 0,9341 0,9357 144,32 0,97458 EXIT ABS VELOCITY 429,773 437,153 451,061 516,222 598,385 ARS, INLFT FLOW ANG, 0, 0. INLET RFL TANG, VFL 667,761 605.063 544,438 478,245 VELOCITY 385,963 395,178 394,886 390,281 342,448 4/28/1967 ADIABATIC EFF. POLYTROPIC EFF. NOZZLE WEIGHT FLOW/NDZ, WEIGHT FLOW T.E. CHECK WEIGHT FLOW/NDZ, WEIGHT FLOW AT EXIT 660.428 605.408 551.118 496.099 AT INLET 667,761 605,063 544,438 478,245 EXIT ABS TANG, VEL 119,813 144,761 144,761 237,750 318,233 N.A.S.A. COMPRESSOR OUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS ? 1 READING NUMBER 21 DATE EXIT REL. VELNCITY 640.158 616.339 550.340 526.027 101. TEMP RAT10 1.025 1.026 1.033 1.037 JNLFT REL VELNCITY 771,280 722.680 672.550 617.283 INLET ABS TANG, VEL 0, FIXED INSTRUMENTATION 101, PRESS 1.081 1.083 1.103 1.103 1.150 MACH NO. 0.6969 0.6536 0.6091 0.5588 EXIT REL. MACH NO. 0.6085 0.5535 0.4921 0.4717 0.1944 0.2416 0.2714 0.2493 CH1 POLYTRUPIC EFFICIENCY 0.8950 0.9910 0.8658 0.973 ST. PRESS RISE CUEFF 0,16138 0,26378 0,26940 0.27930 JNCID ANG SUCT. SURF -2.501 -3.285 -3.77 -4.852 -6.080 REL. TURN ANGLE 7.342 8.697 12.493 21.829 37.687 POINT NUMBER 1.1117 0.9415 0.9424 0.950 M. CMBR. L. 465 1. 465 1. 933 1. 718 EFFICIENCY 0.8938 0.9909 0.8639 0.9769 TRAVERSE ADIABATIC EFF. TRAVERSE POLYTROPIC EFF. FLOW COEFFICIENT L.E. FLOW COEFFICIENT T.E. PERCENT DESIGN SPEED RAVERSE PRESSURE RATIO DIFFUSION ADIARATIC REL, DEV. ANG. T.E. 3.128 5.521 6.149 8.333 FACTOR 0.175 0.241 0.266 0.253 0.161 FLUW ANG. 60.049 56.855 54.183 51.428 FLUW ANG. 52.707 48.158 41.691 29.599 14.113 RADIAL POSITION MADIAL POSITION HADIAL PUSITION CSITION 0 w 4 r 40546 4 C 10 4 L ### PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | TOT, TEMP
RATIO | 1.027 | 1.030 | 1,034 | 1,037 | 1.043 | |--------------------------|--------|--------|--------|--------|---------| | TOT. PRESS
RATIO | 1.084 | 1.098 | 1,108 | 1,135 | 1,159 | | LOSS
COEFFICIENT | 0,0494 | 0.0432 | 0.0567 | 0.0118 | -0.0079 | | ADIABATIC
EFFICIENCY | 0.8518 | 0,8946 | 0.8892 | 0.9823 | 1,0078 | | TOT, PRESS
LOSS PARAM | 0,0110 | 9600.0 | 0.0128 | 0.0028 | -0.0018 | | RADIAL
POSITION | 1 | 2 | e | 7 | ç | Table 6. - Listing of Blade Element Performance (continued). | | 1MLET AX.
VELOCITY
367.881
377.633
373.223
360.836
298.027 | EX17 AX.
VELNC1TY
396.105
395.31
389.75
426.130
461.011 | AXIAL
VFL, RAT10
1.047
1.043
1.181
1.547 | | |---|---|--|--|---| | | INLET ABS
MACH NO.
0.333
0.342
0.334
0.334 | EXIT ABS
HACH NO.
0.377
0.383
0.383
0.46 | ANG. VEL
FANG. VEL
FANG. VEL
FASS. 758
FASS. 758
FASS. 694
FASS. 694
F | .1240
.9504
.9512
.9813
.98474 | | 4/28/1967 | 10 LET ABS
VELOCITY
369,019
377,691
375,078
369,243
321,889 | EXIT ABS
VFLOCITY
422.579
428.675
440.389
498.089 | INLET RFL
TANG. VEL
666.577
603.989
543.471
477.396
402.200
ARS. INLET
FLOW ANG.
0. | | | E | ROTOR SPD 666.577 603.989 543.471 477.396 402.200 | ROTOR SPD
AT EXIT
659.256
604.334
550.140
495.218 | EXIT ABS
TANG, VEL
144, 591
165, 577
204, 917
252, 524
320, 864 | 10N PRESSURE RATIO
ADIABATIC EFF.
POLYTROPIC EFF.
NOZZLE WEIGHT FLOW
FLOW/NOZ, WEIGHT FLOW | | N.A.S.A. COMPRESSOR OUTPUT DATA LADE ELEMENT PERFORMANCE RESULTS 2 READING NUMBER 22 DA | INLET REL
VELNCITY
761.905
742.357
660.337
663.530 | EXIT REL.
VELOCITY
650.035
590.639
520.702
493.178
488,994 | INLET ARS
TANG. VEL
0.
0.
0.
0.
107. TEMP
RATIO
1.032
1.037
1.037
1.04 | 33 | | A,S,A, COMPRE
DE ELEMENT PE
PEADING | INLET REL
MACH NO.
0.6881
0.5978
0.5978
0.5465 | EXIT REL. BACH NO. 0.5802 0.5276 0.4648 0.4415 | CH1
0.2479
0.2923
0.3184
0.2989
0.0538
TOT, PRESS
RATIO
1,110
1,116
1,116
1,116 | FIXED INSTRUMENTATION L.E. CHECK WEIGHT FLO T.E. CHECK WEIGHT FLO | | B
NT NUMBER | INCID ANG
SUCT. SURF
-1.444
-2.155
-2.439
-3.364
-4.418 | REL, TURN
ANGLE
8,689
10,009
13,953
23,254
38,813 | ST. PRESS
RISE COEFF
0.21139
0.27267
0.31604
0.33015
0.1780PIC
EFFICIENCY
0.9623
0.9362
0.9362 | 1.1240
0.9358
0.9369
0.960
0.950 | | 104 | INCID ANG
MN.CMBR.LN
2.326
2.595
3.271
3.206 | REL, DEV,
ANG, T.E.
2.237
2.946
5.398
6.213
8.869 | DIFFUSION
FACTOR
0.216
0.229
0.208
0.203
ADIARATIC
FFICIENCY
0.9280
0.9417
0.9349 | 0 • 4. | | | REL, INLET
FLOW ANG.
61,106
57,985
55,521
52,916
53,462 | FLOW ANG.
52.417
47.976
41.568
29.663
14.649 | | TRAVERSE PRESSURE RAT
TRAVERSE ADJAHATIC EF
TRAVERSE POLYTROPIC E
FLOW CREFFICIENT L.E.
FLOW CREFFICIENT T.E. | | | #AB1AL
P0S11AL
1
1
2
3
3
5
5 | MADIAL
POSITION
2
3
3
5 | HADIAL
POSITION
1
1
2
3
4
5
5
6
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | | | TOT. TEMP
RATIO | 1,032 | 1,033 | 1,036 | 1,038 | 1 042 | |--|--------------------------|--------|--------|--------|---------|---------| | TRUMENTALION | TOT, PRESS
RATIO | 1,101 | 1,112 | 1.118 | 1,140 | 1.158 | | FROM FIXED INS | LOSS
COEFFICIENT | 0.0541 | 0.0307 | 0.0474 | -0.0004 | -0.0175 | | PAKAMETEKS DETERMINED FROM FIXED INSTRUMENTATION | ADIABATIC
EFFICIENCY | 0.8646 | 0,9328 | 0,9151 | 1,0005 | 1.0167 | | PAKAI | TOT. PRESS
LOSS PARAM | 0.0121 | 0,0069 | 0.0108 | -0,0000 | -0.0040 | | | RADIAL
POSITION | 1 | 2 | ٣ | 7 | 2 | Table 6. - Listing of Blade Element Performance (continued). ### NASA - TASK ! (ROTOR 2D) VELOCAX. VELOCAX. UNYO.500 UNSO.418 UNSO.917 UNYO.500 AXTAL VFL.RATIO 1NLET AX. VELOCITY 389.675 349.156 346.039 332.678 1.091 1.055 1.031 1.176 MACH ABS 0.307 0.315 0.315 0.314 0.307 320,201 225,401 109,958 FLOW ANG. 26.443 28.551 32.870 34.655 38.833 0.373 0.373 0.426 0.486 TANG VEL 475.825 FXIT ARS 404.639 IBS.EXIT FXIT REL HACH 1.1400 0.9445 0.9456 127.22 0.98487 VELDCITY 340,725 349,209 347,758 346,479 INLET RFL 667,418 664,752 544,158 477,999 ABS, INLET FLOW ANG. 419,435 478.015 538.453 414.602 EXIT ABS VELOCITY 4/28/1967 ADIABATIC EFF.
POLYTROPIC EFF. NOZZLF WEIGHT FLOW T.E. CHECK WEIGHT FLOW/NOZ, WEIGHT FLOW T.E. CHECK WEIGHT FLOW/NOZ, WEIGHT FLOW PRESSURE RATIO AT EXIT 660.089 605.097 550.835 441.927 ROTOR SPD AT INLET 667.418 604.752 544.158 477.999 EXIT ABS TANG. VEL 184.264 200.459 230.634 270.443 DATE N.A.S.A. COMPRESSOR OUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS R 3 READING NUMBER 23 DAI TOT, TEMP RAT10 1,039 VELNC TY VELNC TY 749,360 698,335 645,789 586,835 502,197 INLFT ABS TANG, VEL 0. 0. 0. 603,615 547,243 479,863 454,054 437,972 EXIT REL. VELNCITY FIXED INSTRUMENTATION 1.040 1.043 1,039 MACH NO. 0.6748 0.6301 0.5628 0.5295 0.4522 TOT. PRESS MACH NO. 0.5354 0.4864 0.4264 0.4047 0.3077 0.3545 0.3833 0.3728 0.1814 EXIT REL RATIO 1.127 1.133 1.133 CHI ST. PRESS RISE COEFF 0.26821 0.33359 0.38118 0.40665 EFFICIENCY 0.8896 0.9446 0.9021 0.9669 INCID ANG SUCT. SURF 0.477 -0.1140 -1.117 -2.480 POLYTROP IC REL, TURN POINT NUMBER ANGLE 10.933 12.317 15.651 25.214 0.9333 0.9346 0.980 0.950 1.1406 MN. CMBR. LN EFFICIENCY 0.8876 0.9436 0.9003 0.9662 0.9717 TRAVERSE ADIABATIC EFF. TRAVERSE POLYTROPIC EFF. FLOW COEFFICIENT L.E. FLOW COEFFICIENT T.E. PERCENT DESIGN SPEED ANG. T.E. 1.914 2.653 5.726 6.498 9.149 FACTOR 0.284 0.312 0.356 0.358 0.353 ADIABATIC RAVERSE PRESSURE RATIO 4.610 5.297 5.453 4.800 FLOW ANG. 63,027 60,000 57.547 55.163 REL, FXIT FLOW ANG. 52.094 47.683 41.896 20.948 14.929 MADIAL PUSITION RADIAL POSITION HADIAL PGSITION NOITION HABIAL 0 m 4 m 11 CM 4 CM | TOT. TEMP
RATIO | 1,039 | 1,039 | 1,040 | 1,041 | 1.044 | |--------------------------|--------|--------|--------|----------|--------| | TOT. PRESS
RATIO | 1.126 | 1.132 | 1,135 | 1.150 | 1,162 | | LOSS
COEFFICIENT | 0.0597 | 0.0381 | 0.0489 | 0.0080 | 0,0102 | | ADIABATIC
EFFICIENCY | 0,8798 | 0.9314 | 0.9251 | 0.9900 | 0,9912 | | TOT. PRESS
LOSS PARAM | 0.0135 | 0.0086 | 0.0110 | 0.0019 | 0.0023 | | RADIAL
POSITION | - | 2 | 3 | 寸 | 5 | - Listing of Blade Element Performance (continued), Table 6. VFL.RATIO 1.086 1.039 1.027 1.147 1.495 VELOCITY 3384.194 348.902 348.902 338.163 361.905 VELOCITY 326.227 325.647 339.647 329.341 315.424 389,321 310,591 217,114 108,377 ABS. EXIT PLOW ANG. 29.545 31.716 35.376 37.590 40.490 EXIT ABS D 361 0 361 0 364 0 468 0 468 0 468 EXIT REL TANG.VEL 459.157 0.9221 0.9236 122.02 0.98498 0.96234 1 N L ET A B S VELOCITY 327.236 335.698 330.977 322.773 INLET RFL TANG, VFL 667,249 407,889 410,164 415,112 458,879 521,889 604.599 544.020 477.878 402.605 ABS. INLFT FLOW ANG. EXIT ABS VELOCITY 4/28/1967 ADIABATIC EFF. POLYTROPIC EFF. NOZZLE WEIGHT FLOW CHECK WEIGHT FLOW/NOZ, WEIGHT FLOW CHECK WEIGHT FLOW FIXED INSTRUMENTATION PRESSURE RATIO AT EXIT 659.922 604.944 550.696 495.718 ROTOR SPD AT INLET 667.249 604.599 544.020 477.878 EXIT ABS TANG.VEL 200.764 215.623 240.104 278.604 333.438 N.A.S.A. COMPRESSOR GUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS R 4 READING NUMBER 24 DATA 1NLFT REL VELNCITY 743.172 601.544 636.792 576.672 107, TEMP 1.044 1.042 1.043 1.043 1.044 INLET ABS TANG. VEL 0. 0. 0. 580,425 522,793 459,494 424,368 415,851 EXIT REL. VFLOCITY 101. PRESS 1.140 1.143 1.143 1.153 1.153 MACH NO. 0.6695 0.6238 0.5247 0.5205 EXIT REL. MACH NO. 0.5142 0.4639 0.4079 0.3780 0.3455 0.3938 0.4208 0.2344 CHI POLYTROPIC EFFICIENCY 0.8841 0.9426 0.8912 0.9556 ST. PRESS RISE COEFF 0.30450 REL. TURN ANGLE 11.592 12.829 16.244 25.613 SUCT. SURF 1.395 0.823 0.850 0.293 INCID ANG 0.37239 0.41917 0.44543 0.36019 POINT NUMBER 1.1483 0.9260 0.9275 0.980 MN.CMBR.LN 5.165 5.573 6.560 6.863 6.114 ADIAGATIC FFFICIENCY TRAVERSE ADIABATIC EFF. TRAVERSE POLYTROPIC EFF. FLOW COEFFICTENT 1.E. FLOW COEFFICTENT 1.E. PERCENT DESIGN SPEED D1FFUSION FACTOR 0.318 0.348 0.393 0.397 REL. DEV. 2.173 2.174 3.104 6.396 7.510 NCID ANG TRAVERSE PRESSURE RATIO 0.9415 0.8891 0.9547 0.9710 0.8819 REL, INLET FLUW ANG, 63.945 FLOW ANG. 52.353 48.134 42.566 30.960 15.509 60.963 58.810 56.573 57.014 MADIAL POSITION RADIAL POSITION POSITION MOILISC BABIAL RADIAL # PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION _ | | TOT, TEMP
RATIO | 1,045 | 1,043 | 1,043 | 1,044 | 1,046 | |--|---------------------------|--------|--------|--------|--------|--------| | NOT TUT WILION TO | TOT. PRESS
RATIO | 1,139 | 1,144 | 1,144 | 1,156 | 1,166 | | The same of the same of | LOSS
COEFFICIENT | 0.0875 | 0.0563 | 0.0700 | 0.0253 | 0,0173 | | NOTIVINIONIONI GRAFI HONE GRAFIES CONTRACTOR | ADIABATIC
EFFICIENCY | 0.8464 | 0,9098 | 0,9035 | 0.9710 | 0,9859 | | | TOT. PRESS
LOSS PARAM. | 0.0196 | 0.0126 | 0.0156 | 0.0059 | 0.0039 | | | RADIAL
POSITION | 1 | 2 | ٣ | 7 | 2 | Table 6. - Listing of Blade Element Performance (continued). ## NASA - TASK I (ROTOR 2D) | | INLFT AX.
VELOCITY
385.867
345.891
342.377
360.549 | EXIT AX. VELOCITY 336,951 327,632 346,3314 369,860 | AXIAL
AXIAL
1.02
1.037
1.015
1.142
1.484 | | |---|--|--|--|---| | | INLET ABS
MACH NO.
0.275
0.283
0.283
0.277 | EXIT ABS
HACH NO.
0.356
0.356
0.356
0.356
0.356 | TANG VEL
4ANG VEL
341,928
290,872
211,580
104,427
104,427
104,427
104,427
103,089
35,461
39,378
42,393 | .157n
.9253
.9268
.61
.99527 | | 4/28/1967 | JNLET ARS
VELOCITY
306.812
315.939
343.930
307.552 | XII ABS
ELOCITY
402.77
410.35
447.81
508.48 | INLET ABEL ABNG. CFL 504.9631 478.1344 478.1341 ADS. INLFT FLOW NG. 0.0.0.00000000000000000000000000000 | 11 11 11 H H | | A
TS
DATE | ROTOR SPD
AT INLET
667.631
604.945
544.331
478.151 | ROTOR SPD
AT EXIT
660.299
605.290
551.010
442.067 | EXIT ABS
TANG VEL
219,398
233,362
284,422
337,641 | TION PRESSURE RATIC
ADIAHATIC EFF.
POLYTROPIC EFF.
NOZZLE WEIGHT FLOW
FLOW/NOZ. WEIGHT FLOW | | COMPRESSOR OUTPUT DATA
ENT PERFORMANCE RESULTS
EADING NUMBER 25 DAT | INLFT REL
VFLNCITY
734.755
682.477
626.369
548.522
484.485 | A + 4 + 6 0 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 | TANGT ABS TANGT VEL 00.00.00.00.00.00.00.00.00.00.00.00.00. | UMENTATION P A A WEIGHT FLOWIN WEIGHT FLOWIN | | S.A. C
ELEME
RE | INLET REL
MACH NO.
0.6611
0.5663
0.5663
0.5122 | EXIT REL.
MACH NO.
0.4905
0.3812
0.3601 | 0.3745
0.4223
0.4515
0.4504
0.2970
1.152
1.153
1.153
1.150 | FIXED INSTRUMENTATION L.F. CHECK WEIGHT FLO T.E. CHECK WEIGHT FLO | | B
NT NUMBER | INCID ANG
SUCT. SURF
2.836
2.287
2.190
1.568 | REL. TURN
ANGLE
12.774
13.804
17.605
26.203
42.491 | NISE COEFF
0.35260
0.45066
0.48820
0.42680
0.42680
0.9269
0.9327
0.9405
0.9405 | 1.1564
0.9090
0.9109
0.9109
0.950 | | 104 | INCIP ANG
AN.CMBR.LN
6.606
7.037
7.900
8.138 | ANG. 1.E. 2.432
3.593
6.375
9.987 |
ADIABATIC
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
PEFFICE
P | | | | REL, INLET
FLOW ANG,
65,386
62,427
60,150
57,848 | PEL. EXIT
FLUW ANG.
52.512
48.623
42.545
31.645
15.767 | | THAVERSE PRESSURE RATIO TRAVERSE ADIABATIC EFF. TRAVENSE POLYTROPIC EFF FLOW COEFFICIENT L.E. FLOW COEFFICIENT T.E. | | | HADIAL
DOSITION
2 1 100N
3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 0 | | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | T. PRESS A SS PARAM E | ADIABATIC
SFFICIENCY | LOSS
COEFFICIENT | TOT. PRESS RATIO | TOT, TEMP RATIO | |-----------------------|-------------------------|---------------------|------------------|-----------------| | | 0.8320 | 0,1065 | 1,150 | 1.049 | | | 0.9262 | 0.0493 | 1.154 | 1.045 | | | 0,9148 | 0,0655 | 1,151 | 1.045 | | | 0.9830 | 0.0155 | 1,161 | 1.044 | | | 0,9873 | 0,0165 | 1,171 | 1,047 | Table 6. - Listing of Blade Element Performance (continued). N.A.S.A. COMPRESSOR OUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS | | INLET AX. | VELOCITY | 286.A30 | 907 943 | | 293.11/ | 278.424 | 233,141 | EXIT AX. | VELOCITY | 314.014 | 309.186 | 292,948 | 322.859 | 346.921 | AXIAL | VEL . RATIO | 1.095 | 1.040 | 0.999 | 1.160 | 1.488 | | | | | | | | | | |-------------------|---|-----------|---------------|---------|---------|---------|---------|---------|-------------|----------|---|---------|---------|---------|---------|-----------|-------------|----------|------------|------------|------------|---------|------------|----------------|--------|--------|--------|--------|--------|---|--| | | INLET ABS | CZ | 0.00 | | | 0.265 | 0.257 | 0.227 | FXIT ABS | ¥ | | | | | | | TANG.VEL | 409.726 | 352,122 | 267.074 | 194,512 | 94,534 | ABS.EXIT | FLOW ANG. | 38.470 | 39,203 | 44.015 | 42,964 | 44.992 | 1,1640
0,9138
0,9157
19,52 | 1,98070
1,95827 | | 1967 | INLET ARS | VELDITA | 287 747 | 440.000 | 000110 | 294,574 | 284.911 | 251,808 | EXIT ABS | VELOCITY | 401,673 | 399,004 | 407,640 | 442.971 | 497,463 | INLET REL | TANG. VEL | 666.554 | 603,969 | 543,453 | 477,380 | 402,186 | ABS. INLET | FLOW ANG. | ó | .0 | ٥. | c | • | n u u r | | | DATE 4/28/1967 | ROTOR SPD | AT THE ET | - 1 1 1 1 1 W | 670 | 903.969 | 543.453 | 477.380 | 402,186 | ROTOR SPD | AT EXIT | 659.234 | 604,313 | 550,121 | 495,201 | 441,354 | EXIT ABS | TANG.VEL | 249,508 | 252,191 | 283.047 | 300,689 | 346.820 | | | | | | , | | PRESSURE RATIO
ADIABATIC EFF.
POLYTROPIC EFF
NOZZLE WEIGHT | FLOW/NOZ, WEIGHT FLOW
FLOW/NOZ, WEIGHT FLOW | | READING NUMBER 26 | INLET REL | | 700 000 | 170.179 | 0/2:1/0 | 648.154 | 555,937 | 474,511 | EXIT REL. | VELOCITY | 516.684 | 468,608 | 396,715 | 379,005 | 368,947 | INLET ABS | TANG. VE | | | | | 0 | TOT. TEMP | RATIO | 1.057 | 1.049 | 1,050 | 1.048 | 1,049 | INSTRUMENTATION F | WEIGHT FLOW/NOZ.
WEIGHT FLOW/NOZ. | | READING | TALET REL | | | /200.0 | 10000 | 0.5569 | 0.5008 | 0,4271 | EXIT REL. | A | 0.4544 | 0.4141 | 0.3508 | 0.3365 | 0.3290 | CH
143 | | 0.3968 | 0.4441 | 0.4715 | 0.4682 | 0.3361 | TOT. PRESS | 4110 | 1,163 | 1,161 | 1.157 | 1.164 | 1.174 | FIXED INSTA | L.E. CHECK | | POINT NUMBER A | TNC 10 ANG | | ********* | /ot - 1 | 3.626 | 3.699 | 3.468 | 2.020 | REL. TURN | ANGLE | 181.181 | 15.081 | 19.305 | 28.680 | 44,657 | ST. PRESS | RISE COFFF | 35448 | 40304 | 0.47+84 | 0.50901 | 0.47167 | POLYTROPIC | FFFICIENCY | 0.7774 | 0.8870 | 0.8485 | 0,9296 | 0.9644 | 1,1635
0,8689
0,8717 | = 0.950
= 50 | | 104 | SNA CIONT | | AN.CABK.LN | /56·/ | 8.406 | 9.409 | 10.038 | 9.300 | RFL. DEV. | | 2 | 3.685 | 6.1.05 | 7.618 | 9.463 | PIFFUSION | FACTOR | 4.4 | 4 4 4 | 40.0 | 7.4 | 0.401 | ADIABATIC | A DE LO LEGICA | 0.7726 | 0.8845 | 0,8453 | 0.9281 | 0.9636 | | TENT T.E. | | | F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | FLOW ANG. | 66.71/ | 63.796 | 61,659 | 5.0 | 006.66 | PEI PYIT | | | 1000 A | 40 447 | 840.45 | 15.243 | | | | | | | | | | | | | | | TRAVERSE PRE
TRAVERSE ADI
TRAVERSE POL | FLOW COEFFICIENT T.E. PERCENT DESIGN SPEED | | | | 141046 | PUSITION | -1 | 2 | m | 4 | rus | I A D T A I | | | ۰ ۵ | u m | o • | חוי | 14 10 4 5 | | 201-10-1 | 4 C | u P | γ 4 | r un | 14 20 | | | ۰,۰ | J PC | 4 | · W | | | # PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | TOT, TEMP
RATIO | 1.055
1.048
1.047
1.046
1.046 | |--------------------------|---| | TOT. PRESS
RATIO | 1, 160
1, 163
1, 158
1, 166
1, 175 | | LOSS | 0, 1477
0, 0573
0, 0738
0, 0192
0, 0043 | | ADIABATIC
EFFICIENCY | 0, 7929
0, 9207
0, 9105
0, 9804
0, 9969 | | TOT. PRESS
LOSS PARAM | 0.0330
0.0127
0.0165
0.0044
0.0010 | | RADIAL
POSITION | 5 4 3 3 2 2 1 | Table 6. - Listing of Blade Element Performance (continued). N.A.S.A. COMPRESSOR AUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS ' POINT NUMBER 7 READING NUMBER 27 DATE 4/28/1967 | | INLFT AX.
VELOCITY
946.030
552.865
547.462
531.057
440.310 | EXIT AX.
VELOCITY
574.359
556.481
522.031
618.276 | AX1AL
VFL. RATTO
1.052
0.954
1.164
1.524 | | |----------------|--|---|--|--| | | INLET ABS
MACH NO.
0.502
0.507
0.505
0.499 | EXIT ABS
MACH NO.
0.527
0.529
0.529
0.529 | EXIT REL
78NG VEL
758.206
654.529
485.505
365.830
186.258
186.258
16.058
19.042
28.647
27.940 | .2150
.9006
.9034
.52
.99307 | | 1967 | INLET ARS
VELOCITY
547,748
552,949
550,182
543,431 | VELOCITY
599.028
588.714
595.473
703.954. | INLET REL
4005. VEL
846.112
761.334
668.772
568.772
568.772
700. NCFT
FLOW ANG. | # H H H H H H | | DATE 4/28/1967 | ROTOR SPD
AT INLET
933.789
846.112
761.334
668.772
563.430 | ROTOR SPD
AT EXIT
923.534
846.595
770.677
693.738
618.302 | EXIT ABS
TANG VEL
165.328
192.086
285.172
327.908
432.045 | TION PRESSURE RATIO ADIABATIC EFF. POLYTROPIC EFF. NOZZLE WEIGHT FLOW FLOW/NOZ. WEIGHT FLOW | | NUMBER 27 | INLET REL
VELOCITY
1082,570
1010,771
939,324
861,726 | EXIT REL.
VELNCITY
952.039
859.129
743.428
774.602 | INLET ABS
TANG. VEL
0.
0.
0.
0.
1.077
1.052
1.052
1.052
1.052
1.052
1.052 | CUMENTATION P A A HFIGHT FLOWIN WEIGHT FLOWIN | | READING NUMBER | INLET REL
MACH NO,
0,9913
0,9267
0,8620
0,7907 | EXIT REL. MACH NO. 0.8550 0.7696 0.6341 0.6484 | CH1
0.1896
0.2403
0.2563
0.2640
0.0184
107, PRESS
PATIO
1.153
1.169
1.169
1.261
1.316 | FIXED INSTRUMENTATION L.E. CHECK WEIGHT FLO T.E. CHECK WEIGHT FLO | | NT NUMBER 7 | INCID ANG
SUCT.SURF
-2.867
-3.301
-3.679
-4.732 | REL, TURN
ANGLE
6.828
7.210
11.357
20.935
36.482 | ST. PRESS
RISE
COEFF
0.14241
0.20977
0.23886
0.12505
0.12505
POLYTROPIC
EFFICIENCY
0.8861
0.9148
0.9148 | 1.2090
0.8579
0.8617
0.980
0.950 | | HO4 | 1NC1D ANG
MN.CMBR.LN
0.903
1.449
2.031
1.393 | REL, DEV. ANG, T.E. 2.675 4.599 6.754 7.103 | DIFFUSION
FACTOR
0.176
0.333
0.266
0.174
ADIABATIC
FFICIENCY
0.8810
0.6376
0.9120 | PRESSURE RATIO = ANIAHATIC EFF, = POLYTROPIC EFF, = FICIENT L.E. = FICIENT 1.E. = | | | REL INLET
Flow ANG.
59.683
56.839
54.281
51.548
51.993 | REL, EXIT
FLOW ANG,
52,855
49.629
42.924
30.613 | | TRAVERSE PRESSURE RATIO TRAVERSE ANIAHATIC EFF TRAVERSE POLYTROPIC EFF FLOW COEFFICIENT L.E. FLOW COEFFICIENT 1.E. | | | HADIAL
PUSITION
1
2
3
3
5
5 | #ADJAL
DOSITION
2
3
3
5 | MADIAL
21110N
2233
344
551710N
572140N
533740N | | # PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | TOT, TEMP
RATIO | 1,050 | 1,055 | 1.065 | 1.071 | 1.081 | |--------------------------|--------|--------|--------|--------|--------| | TOT. PRESS
RATIO | 1,159 | 1,176 | 1,185 | 1,261 | 1,313 | | LOSS
COEFFICIENT | 0.0489 | 0.0564 | 0.1324 | 0.0216 | 0.0027 | | ADIABATIC
EFFICIENCY | 0.8504 | 0.8667 | 0.7602 | 0,9689 | 0,9974 | | TOT. PRESS
LOSS PARAM | 0.0108 | 0.0122 | 0.0294 | 0.0050 | 0,0006 | | RADIAL
POSITION | - | 2 | 3 | t, | ? | Table 6. - Listing of Blade Element Performance (continued). VFL.RAT10 0.994 EXIT AX. VFLOCITY 520.911 505.692 505.583 533.397 564.087 VELOCITY 523.988 526.096 515.710 489.018 INLET ABS MACH NO. 0.480 0.481 0.474 0.457 FLOW ANG. 26.822 29.327 33.187 35.804 39.186 EX1T REL TANG.VEL 660.002 562,360 439,872 308,874 158,373 EXIT ABS MACH NO. 0.516 0.513 0.534 0.588 1.2910 0.9471 0.9490 179.75 0.98677 0.96645 INLET RFL 933.636 935.973 845.973 761.210 668.662 JNLFT ABS VELNCITY 525.609 526.176 518.272 500.412 584.845 580.047 604.701 660.935 740.064 ABS.INLET FLOW ANG. EX1T ABS FIXEN INSTRUMENTATION PRESSURE RATIO ADIABATIC EFF. POLYTROPIC EFF. NOZZLE WEIGHT FLOW. T.E. CHECK WEIGHT FLOW/NOZ. WEIGHT FLOW 4/27/1967 AT EXIT 923.383 846.457 770.550 693.624 618.201 ROTOR SPD 41 INLET 933.636 845.973 761.210 668.662 563.338 EXIT ABS TANG.VEL 263.380 284.096 330.678 364.751 ELADE ELEMENT PERFORMANCE RESULTS R B READING NUMBER 28 DATE EXIT REL. VELOCITY 841.592 756.302 670.674 619.843 INLET RFL VFLOCITY 1071.420 996.259 920.894 835.177 TOT. TEMP RATIO 1.079 1.074 1.086 1.085 INLET ABS TANG, VEL O. TOT, PRESS RATIO 1.271 1.278 1.313 1.313 EXIT REL-MACH NO. 0.7423 0.6592 0.5927 0.5511 INLET REL MACH NO. 0.9783 0.9106 0.8430 0.7634 0.3491 0.3968 0.4249 0.4090 CH3 ST, PRESS PISE COEFF 0.28501 0.35232 0.40115 0.42373 EFFICITYON 0.8998 0.9812 0.9812 0.9585 0.9584 RFL. TURN ANGLE 8.990 10.086 14.850 23.747 SCCT. SURF -1.853 -2.017 -2.077 -2.459 -3.546 1.2945 6.9364 6.9331 6.980 0.980 POINT NUMBER THAVERSE PUESSURE RATIO TEAJERSE ANIMARTIC EFF. THAVERSE POLYTROPIC EFF. FLOW CCEPFICIENT 1.E. CLOW CEFFICIENT 3.E. PERCENT DESIGN SPEED. 1.917 2.733 3.633 3.734 3.734 3.734 401484710 EFF.01E40Y 0.963 0.9405 0.9570 0.9570 PIFFUSION FACTOR 0.304 0.336 0.336 0.344 AEL DEV. ANG. T.F. 1.536 3.007 4.354 6.624 9.963 7.7. 7.0. 2007 1008 5008 RADIAL POSITION RADIAL POSITION RADIAL POSITION 1 2 3 4 4 40° 10° 40° 47 W 4 W 0.961 0.980 1.091 1.395 AXIAL | TOT. TEMP
RATIO | 1, 078
1, 077
1, 080 ·
1, 081
1, 086 | |--------------------------|---| | TOT. PRESS
RATIO | 1,268
1,279
1,283
1,306
1,329 | | LOSS | 0.0545
0.0343
0.0515
0.0130
0.0212 | | ADIABATIC
EFFICIENCY | 0, 8996
0, 9429
0, 9260
0, 9843
0, 9818 | | TOT. PRESS
LOSS PARAM | 0.0124
0.0077
0.0118
0.0030
0.0048 | | RADIAL
POSITION | 1 2 2 3 3 4 4 4 5 5 5 | Table 6. - Listing of Blade Element Performance (continued). | | INLET AX.
VFLNC.1TY
563.002
587.792
498.678
478.297 | EXIT AX.
VELNCTTY
498.018
487.403
474.984
490.998
529.788 | AXIAL
VEL.RATIO
0.990
0.960
0.952
1.045 | | |--|--|---|---|--| | | INLET ABS
MACH NO.
0.460
0.464
0.458
0.447 | EXIT ABS
HACH NO.
0.505
0.507
0.507
0.507
0.519 | FX17 RFL
17ANG.VFL
637,310
541,480
423,361
300,174
151,297 | ABS. EXTT FLOW ANG. 29,859 36,152 36,154 41,383 | | 4/28/1967 | 10 LET ARS
VELOCITY
504.557
507.869
501.156
489.441 | EXIT ABS
VFLOCITY
575.304
574.886
588.787
639.115 | IALET RFL
TANG, VFL
933,462
845,816
761,068
668,538
563,233 | ABS. INLET PLOW AND OF CO. | | S
ATE | ROTOR SPD
AT INLET
933.462
845.816
761.068
668.538 | AT EXIT
923,211
846,299
770,407
693,495 | EXIT AHS
TANG, VEL
2A5,901
304,818
347,046
393,321
466,789 | | | ", A' COMPRESSOR OUTPUT DATA
ELEMENT PERFORMANCE RESULTS
READING NUMBER 29 DA | INLFT REL
VELNCITY
1061,098
986,578
911,253
828,550 | EXIT REL.
VFLNCITY
8n9.567
728.547
536.761
586.405 | INLET ABS
TANG. VEL
0.
0.
0. | TOT. TEMP
RATIO
1.084
1.088
1.088
1.088 | | N.A.S.A. COMPRESSOR OUTPUT DATA
LADE ELEMENT PERFORMANCE RES ^U LT
9 READING NUMBER 29 D | INLET KEL
MACH NO.
0.9664
0.9013
0.8324
0.7564 | EXIT REL.
MACH NO.
0.7112
0.6420
0.5611
0.5193 | CH1
0.3839
0.4324
0.4657
0.4671 | 101, PRESS
RATIO
1,299
1,305
1,325
1,344 | | B
NT NUMBER | INCID ANG
SUCT.SURF
-0.868
-1.119
-1.194
-1.861 | REL, TURN
ANGLE-
9.687
11.013
15.055
23,440
39,145 | ST. PRESS
RISE COEFF
0.31819
0.38754
0.44263
0.48289 | POLYTROPIC
EFFICIENCY
0.9258
0.9452
0.9102
0.9405 | | 10 d | INCID ANG
MN.CMBR.LN
2.902
3.631
4.516
4.709 | 9EL, DEV,
ANG, T.E.
1.815
2.979
5.541
7.529
10.158 | DIFFUSION
FACTOR
0.335
0.355
0.417
0.422 | ADIARATIC
FFICIENCY
0,9229
0,9431
0,9967
0,9950 | | | RFL, INLET
FLUN ANG.
61.682
59.021
56.766
54.419 | FLUW ANG.
51.995
48.009
41.711
30.979
15.938 | |
| | | MADIAL
POSITION
1
2
2
3
4
5 | MADIAL
POSITION
1
2
3
4
5 | MADIAL
POSITION
1
2
3
4
5 | MADIAL
PGSITION
1
2
3
4
5 | # PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION 1.3130 0.9683 0.9695 174.55 0.99037 FIXED INSTRUMENTATION PRESSURE RATIO ** ADIABATIC EFF. ** POLYTROPIC EFF. ** NOZZLE WEIGHT FLOW/NOZ. WEIGHT FLOW ** T.E. CHECK WEIGHT FLOW/NOZ. WEIGHT FLOW ** 1.3139 0.9342 0.9367 0.980 0.950 THAVERSE ADIAHATIC EFF. # 0 THAVERSE ADIAHATIC EFF. # 0 THAVERSE POLYTROPIC EFF. # 0 FLOW COEFFICTENT L.E. # 0 FLOW COEFFICTENT T.E. # 0 PERCENT DESIGN SPEED | SFFICIENCY COEFFICIENT | |------------------------| | | | | | | | | Table 6. - Listing of Blade Element Performance (continued). MACH NO. 0.457 0.451 0.451 0.451 0.432 MACH ABS 0.502. 0.506 0.506 0.506 FX1T RFL TANG. VFL 630.881 529.793 416.139 294.181 151.526 FLOW ANG. 80.848 83.479 87.138 86.813 EXIT ABS VELOCITY 572.807 575.141 588,440 640.984 TANG. VFL. 934.289 846.565 761.742 669.129 563.732 501,869 504,888 494,339 474,311 413,644 DATE 4/28/1967 RDTOR SPD AT INLET 934.289 846.565 761.742 669.129 563.732 AT EXIT 924,028 847,048 771,089 694,109 EXIT ARS TANG.VEL 293.147 317.256 354.950 399.928 N.A.S.A. COMPRESSOR NUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS ? 10 HEADING NUMBER 30 DATA INLFT REL VELOCITY 1060.551 985.680 908.087 820.186 EXIT REL. VELNCITY 800.114 744.214 627.251 580.914 540.422 101. TEMP RATIO 1.088 1.090 1.090 1.093 107. PRESS 1307 1313 1313 1327 1327 INLET REL MACH NO. 0.9659 0.8997 0.4287 0.7478 EXIT REL MACH NO. 0.7016 0.6290 0.5518 0.5140 0.3949 0.4433 0.4721 0.4568 CHI POLYTROPIC EFFICIENCY 0,9084 0,9563 0,8988 0,9426 0,9560 ST, PRESS 0.32854 0.39830 0.44942 0.47438 INCID ANG SUCT. SURF -0,720 -0,948 -0,812 -0,991 -2,071 REL, TURN ANGLE 9.716 11.352 15.546 24.677 39.786 POINT NUMBER INCID ANG MN, CMBR, LN 3,050 3,802 4,898 5,579 5,579 ADIABATIC FFICIENCY 0.9048 0.9545 0.8949 0.9402 FACTOR 0,346 0.383 0.428 0.425 0.362 REL. DEV. ANG. T.E. 1.932 2.810 5.431 7.163 FLUW ANG. 61.830 59.192 57.148 55.289 FLOW ANG. 52.112 47.440 41.601 30.613 84014L POSITION 1 2 3 3 MADIAL POSITION 1 2 3 4 5 ₩ 0/ 10/ 4 C VELOCITY 490.912 499.707 479.707 468.689 497.184 560.322 504.811 491.895 463.512 382.981 AX1AL VFL.RAT10 0.981 0.950 1.073 1.370 # PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | TOT. TEMP
RATIO | 1.089
1.086
1.086
1.085 | |--------------------------|--| | TOT. PRESS
RATIO | 1, 307
1, 317
1, 312
1, 324
1, 341 | | LOSS | 0.0662
0.0347
0.0467
0.0125
0.0168 | | ADIABATIC
EFFICIENCY | 0,8934
0,9487
0,9389
0,9860
0,9865 | | TOT. PRESS
LOSS PARAM | 0.0149
0.0078
0.0106
0.0029
0.0038 | | RADIAL
OSITION | Z E 4 S | RADIAL 20SITION 1 2 3 5 Table 6. - Listing of Blade Element Performance (continued). NASA - TASK ! (ROTAR 2D) N.A.S.A. COMPRESSOR OUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS | | INLET AX. | VELOCITY | 464.304 | 471.247 | 461.532 | 437,837 | 561,232 | EXIT AX. | VELOCITY | 460.447 | 449.470 | 421.828 | 449.025 | 460.394 | AXIAL | VEL . RATIO | 0.992 | 0.954 | 0.914 | 1.026 | 1.330 | | | | | | | | | | |---|---------------------------------------|--------------|----------|---------|---------|---------|---------|-----------|----------|-----------|---|---------|---------|---------|------------|-------------|---------|---------|------------|---------|---------|------------|---|------------|--------|--------|--------|--------|---|--| | | INLET ABS | MACH NO. | 0.423 | 0.429 | 0.422 | 0.408 | 0.353 | | | 0.500 | | | | | EXIT REL | TANG, VEL | 583,868 | 497,135 | 390,113 | 278.270 | 138,932 | ABS. FX1T | FLOW ANG. | 36.476 | 37,919 | 42,103 | 45.816 | 44.969 | 1,3460
0,9407
0,9431 | . 461
. 98868
. 95533 | | 1967 | INLET ARS | VELOCITY | 465,739 | 471,319 | 463,826 | 448,038 | 390,194 | EXIT ABS | VELOCITY | 573,524 | 569,772 | 568,974 | 614,609 | 688,587 | INLET REL | TANG, VEL | 934,545 | 846,797 | 761,951 | 669,313 | 563,887 | ABS. INLET | F) OF ANG | | | | • | • | | M9T # # 30 | | DATE 4/28/1967 | ROTOR SPD | AT INLET | 934,545 | 846.797 | 761,951 | 669,313 | 563,887 | ROTOR SPD | AT FX1T | 924,282 | 847,281 | 771,300 | 694.299 | 618,803 | EXIT ABS | TANG. VEL | 340.414 | 350,146 | 381,187 | 416.029 | 479.871 | | | | | | | | PRESSURE RATIO
ADIABATIC EFF.
POLYTROPIC EFF. | NOZZLE WEIGWT FL
FLOW/NOZ, WEIGHT FLOW
FLOW/NOZ, WEIGHT FLOW | | ELEMENI PERFURMANCE RESULIS
READING NUMBER 31 DA | INLPT REL | VELACITY | 1044,168 | 969.127 | 892,022 | 805,430 | 685.703 | EXIT REL. | VELOCITY | 744.278 | 670,210 | 574,992 | 531,128 | 513,010 | INLFT ABS | TANG. VE | 0 | | | | | | | | | | | | | WEIGHT FLOW/
Weight Plow/ | | E ELEMENI PERFURMAN
KEADING NUMBFR | INLET REL | MACH NO. | 0.9483 | 0.8826 | 0.8122 | 0.7332 | 0,6212 | EXIT RELA | I C | 0.6483 | 0.5868 | 0.5036 | 0.4682 | 0.4548 | CH1 | ı | 0.4388 | 0.4873 | 0.5150 | 0.5173 | 0,3999 | TOT PRESS | 0 1 1 0 | 1,354 | 1.350 | 1.330 | 1,541 | 1,360 | FIXED INSTRUMENTATION | T.E. CHECK | | BLADE
INT NUMBER 11 | INCID ANG | SUCT. SURF | 1.031 | 0.764 | 0.836 | 0.529 | -0.524 | NEU TURN | | 11.041 | 13.021 | 16.033 | 25.022 | 41,226 | ST. PRESS | BISE CORFE | 0.37452 | 0.44303 | 0.404.0 | | 0.51493 | | >L2U+1-11U | 0.8911 | 0,9383 | 0,8920 | 0,9422 | 0,9674 | m 1.3474
m 0.9191
m 0.9225 | | | 04 | INCID ANG | MN, CMBR, LN | 4.801 | 5.514 | 2.4 | 7.009 | 6.756 | DEV. | | 1.560 | 2.853 | 6.593 | 8 337 | 10.350 | NIFFIISTON | 10.00 LV V | | 000 | 2 2 2 2 | 0.482 | 0.423 | | > C 2 0 + C - C - C - C - C - C - C - C - C - C | 0.8863 | 0.9356 | 5 | 0.9398 | 0,9659 | PRESSURE RATIO
ADIMBATIC EFF.
POLYTROPIC EFF. | TENT L.E.
TENT T.E.
SPEED | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | NA MOLE | 64.584 | 400.00 | 700 | 0000 | 57.356 | - NO 100 | 1 | 2 A A A C | 7 T T T T T T T T T T T T T T T T T T T | 42.763 | 44 7 23 | 16.130 | | | | | | | | | | | | | | | TRAVERSE PRE
TRAVERSE ADI
TRAVERSE POL | | | | Q Q Q | NO P P CO | | 10 | J F | > ◀ | r un | 4 | | | ۰ ، | J P | • | run | - 4 | | | ٦. | ~ P | າ ◀ | יט ז | | SAULAL
SOCIETION | 201 - 1001 | ٠, ٥ | נייו נ | | . rv | | | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | TOT. TEMP
RATIO | 1, 103
1, 095
1, 092
1, 089 | 1.091 | |--------------------------|--------------------------------------|--------| | TOT. PRESS
RATIO | 1,350
1,351
1,333
1,343 | 1,355 | | LOSS
COEFFICIENT | 0.0971
0.0382
0.0576
0.0146 | 0.0091 | | ADIABATIC
EFFICIENCY | 0.8664
0.9495
0.9311
0.9850 | 0,9931 | | TOT. PRESS
LOSS PARAM | 0.0221
0.0086
0.0128
0.0034 | 0,0020 | | RADIAL
POSITION | 7 3 5 1 | 5 | Table 6. - Listing of Blade Element Performance (continued). , W.A.S.A. COMPRESSOR GUTPUT DATA | | INCET AX. | 485.713 | 443,682 | 429,364 | 408.574 | 335,670 | EXIT AX. | VFLOCITY | 429,245 | 415.680 | 377,317 | 431.840 | 461,572 | AXIAL | VFL. RATIO | 0.985 | 0.937 | 0.879 | 1.057 | 1.375 | | | | | | | | | | |--|-----------|-------------------------|---------|---------|---------|---------|-----------|-----------|---------|---------|---------|---------|---------|-----------|------------|---------|---------|---------|---------|---------|------------|-------------|--------|--------|--------|--------|--------|--|--| | | INLET ABS | 3.396 | 0.404 | 0.393 | 0.380 | 0.328 | EXIT ABS | MACH NO. | 0.496 | 0.492 | 0.494 | 0.541 | 909.0 | EXIT REL | TANG. VEL | 546.114 | 465.730 | 349.280 | 259.037 | 125.648 | ABS, EXIT | FLOW ANG. | 41.248 | 42,428 | 48.102 | 45.139 | 46.827 | 0.4 % | .99349
.95300 | | 4/27/1967 | INLET ABS | 437,060 | 443.749 | 431.497 | 418.093 | 362,545 | EXIT ABS | VELOCITY | 571.700 | 563.170 | 565.357 | 614.498 | 683.510 | INLFT REL | TANG, VEL | 932.773 | 845.192 | 760.506 | 668.044 | 562.818 | ARS.INLET | FLOW ANG. | | ٥. | ٥. | 0. | .0 | | 6.0
H H | | TE 4/27 | ROTOR SPD | | | | 668.044 | 562.818 | ROTOR SPD | AT EXIT | 922.530 | 845.674 | 769.838 | 692.983 | 617.630 | EXIT ARS | TANG, VEL | 376.416 | 379.944 | 420.559 | 433,947 | 491.982 | | | | | | | | TION PRESSURE RATIO
ADIABATIC EFF.
POLYTROPIC EFF.
NOZZLE WEIGHT FL | OZ. WEIGHT FL
OZ. WEIGHT FL | | MENT PERFORMANCE RESULTS
READING NUMBER 32 DA | INLET REL | 1030.091 | 954.601 | 874.391 | 788.090 | 669.479 | EXIT REL. | VELOCITY | 695.264 | 624.265 | 514.544 | 506.357 | 490.844 | INLET ARS | TANG, VEL | 0 | 0. | 0. | ٠. | 0. | TOT. TEMP | RATIO | 1.11 | 1.101 | 1.102 | 1.096 | 1.098 | UMENTATION A A G G G | WEIGHT FLOW/N
Weight Flow/N | | E | INLET REL | - 04 % O | 0.8683 | 0.7986 | 0.7161 | 0.4063 | EXIT REL. | MACH NO. | 0.6034 | 0,5454 | 0.4499 | 0.4459 | 0.4349 | CHJ | | 0.4514 | 0.4953 | 1.5155 | 0.5250 | 0.4120 | TOT, PRESS | RATIO , | 1.371 | 1.358 | 1.336 | 1.352 | 1,368 | ED INSTR | 1.m. CHECK | | BLADE
NT NUMBER 12 | INCID ANG | 3001.304F | 2.163 | 2.592 | 2.270 | 1.308 | REL. TURN | ANGLE | 13.129 | 14.053 | 17.762 | 27.593 | 43.96n | ST PRESS | RISE COEFF | n.38469 | 0.45257 | 0.49718 | 0.54986 | 0.93449 | PCLYTROPIC | EFF1C1ENCY | 0.8548 | n.9082 | 0.8511 | n.9433 | 0 9572 | 1.3580
0.8929
0.8975
n.980 | | | 100 | INCID ANG | N 1 . N 8 M . L N | 6,913 | 8.302 | R.840 | 8.588 | REL. DEV. | ANG. T.F. | 1.653 | 3.220 | 6.620 | 7.507 | 5.448 | PIFFUSION | FACTOR | 0.45A | 0.479 | 0.558 | 0.509 | 0.447 | ADIAPATIC | EFF ICIENCY | 0.8482 | n.9041 | 0.8449 | 0.940R | 0.9552 | PRESSURE RATIO = ANIAPATIC EFF. = POLYTROPIC EFF. =
FICIENT L.F. | | | | RFL INCET | . 695 - 95
567 - 569 | 62,303 | 60.552 | 58.550 | 59.188 | HFL. FXIT | FLOW ANG. | 58.12 | 4F.250 | 42.790 | Э. | 45.828 | | | | | | | | | | | | | | | THAVEBSE PRESSURE RAT
THAVERSE ADIAPATIC RE
THAVEBSE POLYTROPIC E
FLOW CCEFFICIENT L.F. | FLCW CCEFFICIENT
PERCENT DESIGN SPEED | | | RADIAL | 101.100. | ٠ م | m | 4 | 'n | RADIAL | POSITION | **1 | 2 | 8 | 4 | ,Č | RADIAL | POSITION | - | 2 | 8 | 4 | ŗ. | RADIAL | POSITION | | ~ | ₩ | 4 | ïν | | | | TOT, TEMP
RATIO | 1,112 | 1.096
1.091
1.093 | |--------------------------|------------------|----------------------------| | TOT. PRESS
RATIO | 1,365
1,356 | 1,340
1,350
1,362 | | LOSS
COEFFICIENT | 0.1340 | 0,0788
0,0186
0,0067 | | ADIABATIC
EFFICIENCY | 0.8310
0.9197 | 0,9118
0,9819
0,9952 | | TOT. PRESS
LOSS PARAM | 0.0304 | 0.0175
0.0043
0.0015 | | RADIAL
POSITION | 1 2 | m 4 s | Table 6, - Listing of Blade Element Performance (continued). INLET AX. VELOCITY 696.702 670.988 660.808 629.106 516.399 AXI T REL 1 ANG. VEL 708.690 612.145 478.238 860.778 PEGS. FK PT 001. 002. 003. 003. 003. 003. A KIT A BBS CIT A 1.6210 0.9180 0.9234 212.89 0.99077 0.96487 INLET REL TANG. VEL 1201.157 1088.376 979.324 860.258 VELOCITY 658.732 671.090 664.092 643.763 VELOCITY 748.429 733.788 749.740 786.640 856.431 ABS.INLET FLOW ANG. 4/27/1967 CHOSTRUMENTATION PRESSURE RATIO ADIABATIC EFF. POLYTROPIC EFF. NOZZLE WEIGHT FLOW CHECK WEIGHT FLOW CHECK WEIGHT FLOW CHECK WEIGHT FLOW CHECK WEIGHT FLOW AT INLET 1201.157 1088.376 979.324 860.258 AT EXIT 11187.966 1088.998 991.441 892.373 EXIT ABS TANG.VEL 479.276 476.852 916.103 531.601 N.A.S.A. COMPRESSOR OUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS 7 13 READING NUMBER 33 DAY INLET ABS TANG. VEL. 0. 0. INLET REL VELOCITY 1369.929 1278.642 1163.256 1074.465 VELDCITY 912.514 912.514 828.117 722.218 682.905 643.928 707. TEMP RATIO 1.188 1.170 1.173 1.157 1.158 FIXER INSTRUMENTATION EXIT REL. MACH NO. 0.7774 0.7119 0.6216 0.5558 TOT. PRESS 1.680 1.683 1.634 1.612 1.612 1.598 INLET REL MACH NO. 1.2676 1.1873 1.0991 0.9962 0.4723 0.5260 0.5602 0.5670 CH1 PCL YTROPIC EFFICIENCY 0.83n1 0.8967 0.9598 0.9365 81SE COEFF 0.37116 0.45027 0.51135 0.56206 0.53182 REL. TURN ANGLE 10.312 10.681 14.802 21.739 SUCT. SURF -1.217 -1.794 -1.970 -2.458 POINT NUMBER 1.6246 0.8719 0.8804 0.950 INCID ANG N.CMBR.LN 2.5933 7.956 3.740 3.930 AD1ABATIC FFFICIENCY 0.8177 0.8892 0.8506 0.9321 0.9080 THAVERSE PRESSURE RATIO THAVERSE ADIABATIC EFF. THAVERSE POLYTROPIC EFF. FLOW CCEFFICIENT L.E. FLOW CCEFFICIENT T.E. PERCENT DESIGN SPEED ANG. T.F. 0.842 2.635 5.018 8.633 12.522 DIFFUSION FACTOR 0.462 0.477 0.523 0.500 KEL. EXIT FLOW ANG 51.022 47.665 41.188 32.083 18.302 FLOW ANG. 61.833. 61.833. 56.846 56.990 53.822 RABIAL POSITION RADIAL FOSITION RADIAL POSITION 1 2 3 4 RADIAL POSITION 40 B 4 B VEL.RAT.O VEL.RAT.O 0.873 0.831 0.822 0.915 VELOCITY 573.439 557.703 557.703 543.082 575.508 | TOT, TEMP
RATIO | 1,184 | 1,165 | 1,160 | 1,146 | 1,145 | |--------------------------|--------|--------|--------|--------|--------| | TOT, PRESS
RATIO | 1,636 | 1,644 | 1,617 | 1,608 | 1,586 | | LOSS
COEFFICIENT | 0.1470 | 0.0630 | 0.0711 | 0.0050 | 0.0350 | | ADIABATIC
EFFICIENCY | 0.8229 | 0.9252 | 0.9215 | 0.9949 | 0.9722 | | TOT, PRESS
LOSS PARAM | 0.0339 | 0.0142 | 0.0162 | 0.0011 | 0.0078 | | RADIAL
POSITION | | 2 | 3 | 4 | 5 | Table 6. - Listing of Blade Element Performance (continued). NASA - TASK I (ROTOR 2D) | | INLET AX.
VFLOCITY
651.915
663.216
641.862
602.307
493.573 | EXIT AX.
VFLOCITY
557.626
546.550
534.879
564.975 | AXIAL
VFL.RATIO
0.855
0.824
0.833
0.938 | | | |---|--|---|--|--|--| | | INLET ABS
MACH NO.
0.605
0.516
0.598
0.571 | EXIT ABS
MACH NO.
0.645
0.633
0.651
0.687 | EXIT REL
TANG. VEL
673.285
592.535
456.536
346.371 | FLOW ANG.
FLOW ANG.
42.688
42.233
44.981
44.008 | 1.6460
0.9174
0.9230
19.41
0.99078 | | 4/27/1967 | INLET ABS
VELOCITY
653.931
663.317
645.052
616.341
533.091 | EXIT ABS
VELOCITY
759.619
738.181
756.704
788.576 | INLET REL
TANG. VEL
1200.820
1088.070
979.049
860.017 | ABS.INLET FLOW ANG. 0.00.00.00.00.00.00.00.00.00.00.00.00. | # 11 # 11 # #
25
*E *E C O | | Ω ¥
⊞ | ROTOR SPD
AT INLET
1200.820
1088.070
979.049
860.017 | AT EXIT
1187.632
1088.692
991.063
892.122 | EXIT ARS
TANG. VEL
514.347
496.156
534.527
545.751
608.505 | , | SURE RAT
BATIC EF
TROPIC E
LE WEIGH
WEIGHT | | N.A.S.A. COMPRESSOR DUTPUT DATA
BLADE ELEMENT PERFORMANCE RESULT
14 READING NUMBER 34 D | INLET REL
VELOCITY
1367.331
1274.318
1172.446
1089.066 | EXIT REL.
VELOCITY
875.189
806.125
703.781
666.319 | INLET ABS
TANG. VEL
0.
0.
0. | 101. TEMP
RAF110
1.201
1.178
1.176
1.162 | RUMENTATION
WEIGHT FLOW
WEIGHT FLOW | | V.S.A. COMPRE
DE ELEMENT PE
TEADING | INLET REL
1.2656
1.1826
1.0865
0.9795 | EXIT REL.
MACH NO.
0.7428
0.6910
0.5904 | 0.4894
0.5424
0.5687
0.5706
0.4563 | TOT, PRESS
148110
14841
1.664
1.643
1.631 | FIXED INSTE | | N.A
BLAE
INT NUMBER 1 | INCID ANG
SLCT. SURF
-1.504
-1.209
-1.285 | REL. TURN
ANGLE
11.135
11.259
15.269
23.483 | ST. PRESS
RISE COEFF
0.38790
0.56772
0.56908
0.55909 | PCLYTROPIC
EFFICIENCY
0.8993
0.8755
0.9345 | 1.6514
10.8702
11.6514
11.6514
11.9514
11.9514 | | Cd | INCID ANG
NN. CMBR.LN
2.723
3.246
4.501
5.235 | REL DEV.
ANG. T.E.
0.188
4.282
4.312
8.081 | DIFFUSION
FACTOR
0.497
0.539
0.539
0.516 | AUTABATIC
FFFICIENCY
0.88521
0.8821
0.8665
0.9298 | PRESSURE RATIO ADIABATIC EFF. POLYTROPIC EFF. FFICIENT L.E. FFICIENT T.E. | | | KFL. INLET
10. ANG.
54.503
57.536
56.751
56.753
56.733 | • 3C P C + P | | | TRAVERSE PRESSUR
TRAVERSE ADLATRO
TRAVERSE POLYTRO
FLOW CCEFFICIENT
FLOW CCEFFICIENT
FLOW CCEFFICIENT
PERCENT DESIGN SPEEL | | | RADIAL
POSITIUN
1
2
3
4
4 | PAADIAL
POSITIUN
1
3
3
5
5 | RADIAL
POSITION
1
2
3
4
4
5 | RAD LAL
POSITIU:3
1
2
3
3
5
5 | | | RADIAL
POSITION | TOT. PRESS
LOSS PARAM | ADIABATIC
EFFICIENCY | LOSS | TOT, PRESS
RATIO | TOT. TEMP
RATIO | |--------------------|--------------------------|-------------------------|--------|---------------------|--------------------| | | 0,0356 | 0.8233 | 0.1522 | 1,671 | 1,192 | | | 0,0153 | 0,9230 | 0,0675 | 1,675 | 1,172 | | | 0,0156 | 0,9283 | 0.0677 | 1,646 | 1,165 | | | 0,0021 | 0.9910 | 0,0092 | 1,622 | 1,150 | | | 0,0089 | 0.9694 | 0.0401 | 1,596 | 1.148 | Table 6. - Listing of Blade Element Performance (continued). NASA - TASK I (ROTOR 2D) | | INLET AX.
VFLOCITY
A31.507
648.168
A36.819
604.550 | EXIT AX VFLOCITY 545.290 533.882 560.162 560.462 | 7 | |--|--|---
---| | | INLET ABS
MACH ABS
0.585
0.593
0.593
0.573 | MACH NO.
0.653
0.653
0.647
0.731
EXIT REL | 24 253 357 357 357 357 357 357 357 357 357 3 | | | INLET ABS
VELNCITY
633.460
648.267
639.983
618.636 | EXIT ABS
VELOCITY
771.858
741.357
753.186
771.545
834.848 | 12505
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.050
1200.0 | | ,
T
T | ROTOR SPD 'AT INLET 1200.364 1087.657 978.677 859.690 724.276 | ROTOR SPD
AT EXIT
1187.181
1088.278
990.686
891.783
794.813 | VEL TANG VEL 1. 544.948 514.383 542.113 540.969 604.173 TEMP 10 PRESSURE RATIO ADIABATIC EFF NOZZE WEIGHT FLOW FLOW/NDZ. WEIGHT FLOW | | N.A.S.A. COMPRESSOR OUTPUT DATA
BLADE ELEMENT PERFORMANCE RESULT:
15 RFADING NUMBER 35 D | INLET RFL
VELOCITY
1357.256
1266.194
1169.354
1059.140
895.328 | EXIT REL.
VELOCITY
843.361
783.821
688.927
652.461
606.868 | 992 TANG. VEL T
992 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | A.S.A. COMPRE
DE ELEMENT PE
5 RFADING | INLET REL
MACH NO.
1.2532
1.1746
1.0834
0.9802 | EXIT REL. MACH NO. 0.7136 0.5920 0.5668 0.516 | 0.4992
0.5916
0.5988
0.5988
0.4885
107. PRESS
RATIO
1.731
1.648
1.648
1.633
1.643
1.643
1.643
1.643
1.643 | | NT NUMBER | INCID ANG
SLCT. SURF
-0.299
-0.932
-1.012
-1.396 | ANGLE 12.584 12.138 16.283 22.164 37.280 | RISE COEFF
0.44772
0.59854
0.59861
0.59861
0.58877
0.8877
0.9373
0.9373
0.9373
0.9373
0.9373
0.9373
0.9373 | | 104 | INCID ANG
MN.CMBR.LN
3.471
3.818
4.698
5.174 | AREL DEV. ANG. 1.F0.513 2.040 4.495 9.270 13.006 | FACTOR
0.525
0.526
0.527
0.524
0.487
0.487
0.487
0.8042
0.8042
0.8042
0.8042
0.8042
0.8728
0.9274
0.9274
PRESSUME HATIO = POLYTROPIC FFF. | | | FEI. INLET
FLOW ANG.
60.201
59.208
56.948
54.884
56.056 | KFL. EXIT
FLON ANG.
49.667
47.070
40.665
32.720
18.786 | FACTO 0.52 0.52 0.52 0.54 0.55 0.68 0.48 FFICI 0.80 0.80 0.80 0.80 0.80 0.82 ELCHAVERSE PRESSUME HA THAVERSE POLYTROPIC FLCM CCEFFICIENT L.E FLCM CCEFFICIENT L.E PERCENT DESIGN SPEED | | | RADIAL
POSITION
1
2
3
4
5 | RADIAL
POSITION
1
2
3
3
4
5
8
8 DIAL | POSITION
1 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | TOT. TEMP
RATIO | 1,198 | 1,176 | 1,167 | 1, 151 | 1,149 | |--|--------------------------|--------|--------|--------|--------|--------| | I NOT THE TOTAL | TOT. PRESS
RATIO | 1.684 | 1,693 | 1,660 | 1.629 | 1.607 | | THE PROPERTY OF THE PARTY OF | LOSS
COEFFICIENT | 0,1660 | 0.0724 | 0.0663 | 0.0076 | 0,0339 | | INVESTERS DETERMINED INCH LAKE INSTRUMENTALION | ADIABATIC
EFFICIENCY | 0,8133 | 0,9197 | 0.9310 | 0.9926 | 0.9747 | | Tolly 1 | TOT. PRESS
LOSS PARAM | 0.0394 | 0.0165 | 0.0152 | 0.0017 | 0.0075 | | | RADIAL
POSITION | 1 | 2 | 3 | 4 | 5 | Table 6. - Listing of Blade Element Performance (continued). N.A.S.A. COMPRESSOR OUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS > POINT NUMBER 16 RFADING NUMBER 36 DATE 4/27/1967 | | INLET AX.
VFLOCITY
792.510
788.086
760.294 | 586.228
EXIT AX.
VFLOCITY
R75.354
785.559
644.750 | 887,188 | AXIAL
VFL.RATIO
1.105
0.997
0.848 | | | |---|---|---|----------|--|--|--| | | INLET ABS
MACH NO.
0.749
0.743 | 0.587
EXIT ARS
HACH NO.
0.051 | 1.060 | EXIT REL
1166.233
1022.518
813.186 | ABS.EXIT
FLOW ANG.
18.063
21.426
31.703 | .4400
.7455
.7582
.90 | | | INLET ARS
VELOCITY
794.961
788.206
764.072 | 633.164
EXIT ABS
VELOCITY
922.766
843.906
758.587 | 1167.781 | INLET REL
1467.844
1330.023
1196.759 | ABS.INLET
FLOW ANG.
0.
0.
0. | 2 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | ROTOR SPD
AT INLET
1467.844
1330.023
1196.759 | 885.669
ROTOR SPD
AT EXIT
1451.724
1330.782
1211.444 | 971.923 | EXIT ABS
TANG.VEL
285.491
308.264
398.258 | | NUMENTATION PRESSURE RATIO ADIABATIC EFF. POLYTROPIC EFF. NOZZLE WEIGHT FLOW WEIGHT FLOW/NOZ.
WEIGHT FLOW WEIGHT FLOW/NOZ. WEIGHT FLOW | | • | INLET REL
VELOCITY
1669.290
1546.036
1419.872 | 1088.718
EXIT REL.
VELOCITY
1459.483
1289.455
1038.324 | 943.728 | INLET ABS
TANG. VEL
0.
0. | 101. TEMP
RATIO
1.122
1.126
1.141 | JMENTATION PR
PC
PC
WEIGHT FLOW/NC | | | INLET REL
MACH NO.
1.5718
1.4573 | 1.0089
EXIT PEL.
MACH NO.
1.3126
1.1468 | 0.8570 | CH1
0.1451
0.2091
0.2170 | 101, PRESS
RATIO
1.343
1.358
1.262 | FIXED INSTRUMENTATION
L.E. CHECK WEIGHT FLO
T.E. CHECK WEIGHT FLO | | , | INCID ANG
SLCT. SURF
-0.915
-0.788 | 7.381
ANGLE
8.526
6.885 | 41.207 | ST. PRFSS
RISF COEFF
0.07800
0.14218
0.17011 | POLYTROPIC
EFFICIENCY
0.7340
0.7373
0.5030 | | | • | INCID ANG
MN.CMBR.LN
2.455
3.962
5.322 | 5.899
PEL. DEV.
ANG. T.E.
2.929
7.436
15.420 | 9.513 | DIFFUSION
FACTOR
0.188
0.233
0.354 | ADIAHATIC
FFFICIENCY
0.7256
0.7257
0.4865 | | | | MEL. INLET
FI OK ANG.
61.635
59.352
57.572 | AFL. EXIT
FLOW ANG.
53.109
57.500 | 15.243 | | | THAVERSE ADIABATIC EFF. THAVERSE ADIABATIC EFF. THAVERSE POLYTROPIC EFF ELOW CCEFFICIENT L.E. FLCW CCEFFICIENT T.E. PERCENT DESIGN SPEED | | | RADIAL
POSITIUN
1
2 | SADIAL
POSITION
1
2
3 | æ | RADIAL
POSITION
1
2
3 | RADIAL
POSITIUN
1
2
3
3 | | | TOT. TEMP
RATIO | 1,116
1,133
1,134 | 1,197 | |--------------------------|----------------------------|--------| | TOT. PRESS
RATIO | 1,322
1,361
1,269 | 1.712 | | LOSS | 0.1279
0.1691
0.2825 | 0.1974 | | ADIABATIC
EFFICIENCY | 0.7182
0.6937
0.5261 | 0.8438 | | TOT. PRESS
LOSS PARAM | 0.0282
0.0345
0.0532 | 0.0446 | | RADIAL
POSITION | 3 2 1 | 5 | Table 6. - Listing of Blade Element Performance (continued). | | INLET AX.
VFLOCITY
786.861
785.899
765.040
726.824
590.986 | EXIT AX.
VFLOCITY
757.875
726.966
549.642
803.199 | AXIAL
VFL.RATIO
0.963
0.925
0.718
1.105 | | |---|---|---|---|--| | | INLET ABS
MACH NO.
0,743
0,741
0,724
0,592 | MACH NO. 0.7745
0.7745
0.0774
0.080 | EXIT REL
7 ANG. VEL
907.581
795.450
379.581
201.624
201.624
ABS. EXIT
FLOH ANG.
35.446
46.755
42.141 | 1,748
0,7944
0,8099
3,91
0,98593
1,03303 | | 4/27/1967 | INLET ARS
VELNCITY
789.294
786.019
768.841
743.758 | EXIT ABS
VELOCITY
935.476
903.741
802.780
1077.985 | INLET REL
1469.550
1331.569
1198.150
1052.479
886.699
ABS. INLET
FLOW ANG.
0. | 4 H H H H H H A 3 3 3 3 3 3 3 3 3 3 3 3 3 | | ñ | ROTOR SPD
AT INLET
1469.550
1331.569
1198.150
1052.479
886.699 | ROTOR SPD
AT EXIT
1453.412
1332.329
1212.852
1091.770
973.053 | EXIT APS
TANG.VFL
545.831
536.870
564.397
712.178
771.479 | SURE RAY
BATIC EF
TROPIC E
LE WEIGHT
WEIGHT | | N.A.S.A. COMPRESSOR OUTPUT DATA
BLADE ELEMENT PERFORMANCE RESULTS
17 READING NUMBER 37 DA | INLET REL
VELOCITY
1668.102
1546.254
1423.615
1288.755
1092.550 | EXIT REL.
VELOCITY
1183.590
1077.625
835.399
893.837 | TANG. VFL
0.
0.
0.
0.
0.
1.223
1.223
1.223
1.225
1.225 | UMENTATION PRES
ADIA
POLY
NOZZ
WEIGHT FLOW/NOZ. | | A.S.A. COMPRES
DE ELEMENT PES
PEADING | INLET REL
MACH NO.
1.5698
1.4569
1.3410
1.2102 | EXIT REL.
MACH NO.
1.0055
0.9230
0.7075
0.838 | CH1
0.3413
0.3986
0.4088
0.3240
0.7240
1.764
1.766
1.786
1.786
1.786 | FIXED INSTRUMENTATION
L.E. CHECK WEIGHT FLO
T.E. CHECK WEIGHT FLO | | NT NUMBER | INCID ANG
SLCT. SURF
-0.717
-0.689
-0.519
-0.908 | REL. TURN
ANGLF
11.697
11.875
8.614
30.076
43.011 | ST. PRESS
RISE COEFF
0.22210
0.33542
0.33542
0.33542
0.33542
0.17343
0.17343
0.17365
0.6488
0.6488
0.6488 | = 1.767n
= 0.7635
= 0.7816
= 0.7816
= 0.980
= 1.0950 | | 110d | INCID ANG
MN. CPBR.LN
3.053
4.063
5.191
5.662 | WEL. DFV. anG. T.E. an. 12.657 12.657 1.845 7.526 | PIFFUSION
FACTOR
0.410
0.538
0.538
0.458
0.350
ablakatic
APIAKATIC
APIAKATIC
0.8111
0.8247 | 0 • 14 | | | HFI. INLET
FLOW ANG.
61.23
59.451
57.441
55.372
56.316 | HEL. EXIT
FLOR ANG.
A7.536
A8.827
A8.827
JR.295 | | THAVERSE PRESSURE RAT
THAVERSE ADIARATIC EF
THAVERSE POLYTROPIC EI
FLCW CCEFFICIENT L.E.
FLCW CCEFFICIENT T.E.
PERCENT DESIGN SPEED | | | RADIAL
POSITION
2
3
3 | AADTAL
POSITION
1
2
3
5
5
5 | RADIAL
POSIȚIUN
2
3
3
4
5
5
POSITIUN
1 | | PARAMETERS DETERMINED FROM FIXED INSTRUMENTATION | | ADIABATIC LOSS TOT. PRESS TO'
EFFICIENCY COEFFICIENT RATIO | 0.7124 | 0,7872 0,1824 1,762 | 0.7157 0.2444 1.609 | 0.8771 0.1281 1.812 | 0.8953 0.1624 1.867 | |------|---|--------|---------------------|---------------------|---------------------|---------------------| | Nu 1 | TOT. PRESS
LOSS PARAM | 0.0544 | 0,0412 | 0.0487 | 0,0313 | 0.032 | | | RADIAL
POSITION | - | 2 | ٣ | 7 | ď | Table 6. - Listing of Blade Element Performance (continued) AXIAL VEL.RATIO 0.933 0.895 0.738 1.025 EXIT AX. VFLOCITY 732.383 702.051 558.403 736.871 INLET AX. VELOCITY 784.659 784.774 756.488 719.000 584.613 EXIT REL TANG.VEL 864.313 751.337 763.880 347.796 INLET A8S HACH NO. 0.741 0.745 0.691 0.586 HACH NO. 0.789 0.773 0.773 0.722 0.911 ABS.EXIT FLOW ANG 38.716 39.520 49.216 45.217 44.359 233.84 0.98436 1.03716 1,829 0,8099 0,8253 EXIT ABS VELNCITY 940.041 910.123 855.370 1049.960 INLET REL 1467.515 1329.725 1196.491 1051.022 885.471 1NLET ABS VELOCITY 787.085 784.893 760.247 735.752 631.420 ABS.INLET FLOW ANG. 0. 0. 0. DATE 4/27/1967 ADIABATIC EFF. POLYTROPIC EFF. NOZZLE WEIGHT FLOW L.E. CHFCK WEIGHT FLOW/NOZ. WEIGHT FLOW T.E. CHECK WEIGHT FLOW/NOZ. WEIGHT FLOW PRESSURE RATIO AT INLET 1467.515 1329.725 1196.491 1051.022 885.471 AT EXIT 1451.399 1330.484 1211.173 1090.258 971.706 EXIT ARS TANG.VEL 587.086 579.147 647.292 742.462 N.A.S.A. COMPRESSOR OUTPUT DATA RLADE ELEMENT PERFORMANCE RESULTS R 18 RFADING NUMBER 38 DAT EXIT REL. VELOCITY 1134.038 1028.310 794.123 819.833 1NLET ARS TANG. VEL 0. 0. 0. 101. TEMP RATIO 1.276 1.245 1.247 1.249 INLET REL VELOCITY 1665.264 1544.094 1417.591 1282.957 1087.543 FIXED INSTRUMENTATION 101, PRESS RAIIC 1.940 1.730 1.924 1.924 EXIT REL. MACH NO. 6.9517 0.8738 0.6703 0.7111 IMLET MEL MACH NO. 1.5472 1.4564 1.3440 1.9949 0,3803 0,4357 0,4529 0,4066 0,2358 CHI RISE COEFF 0.25487 0.33297 0.33891 0.318001 0.31806 POLYTROPIC EFFICIENCY 0.7275 0.8197 0.7108 0.8417 SUCT. SUPF -0.68% -0.68% -0.68% -1.36% -1.314 REL. TURN ANGLE 12.144 32.510 32.417 30.357 1,8579 10,7690 10,7882 10,980 110,950 POINT NUMBER 1NCIB ANG NN.CMBR.LN 3.487 4.662 5.447 5.914 5.966 ADJAHATIC FFFICIENCY 0.7029 0.8828 0.6878 0.8558 PEL. DEV. ANG. T.E. -0.457 1.912 9.110 1.817 FACTOR 0.448 0.579 0.579 0.579 0.579 THAVERSE PRESSURE RATIO THAVERSE ADIAHATIC EFF. THAVERSE POLYTROPIC EFF. FLOW CCEFFICIENT L.E. FLOW CCEFFICIENT T.E. PERCENT DESIGN SPEED HEN, EXIT HEN, ANG. 46,942 46,948 45,280 ## 1. INLET # 1. EAN # 1. EAN # 2. 452 # 7. 697 # 7. 697 # 55. 624 RADIAL POSITIUN RABIAL POSITION RADIAL POSITION 1 2 3 3 5 RADIAL POSITION ころちゅう 11 C 10 7 L | TOT, TEMP
RATIO | 1.258 | 1,237 | 1.224 | 1,223 | 1,217 | |--------------------------|--------|--------|--------|--------|--------| | TOT, PRESS
RATIO | 1,791 | 1,850 | 1,739 | 1.872 | 1.900 | | LOSS
COEFFICIENT | 0.2571 | 0.1711 | 0.2208 | 0,1325 | 0,0996 | | ADIABATIC
EFFICIENCY | 0.7027 | 0.8106 | 0,7651 | 0.8790 | 0.9284 | | TOT. PRESS
LOSS PARAM | 0.0610 | 0.0391 | 0.0471 | 0.0324 | 0.0225 | | ADIAL
SITION | | 7 | 3 | 7 | 2 | Table 6. - Listing of Blade Element Performance (continued). NASA - TASK I (ROTOR 20) | | | ٥ | N,A,S,
BLADE B
POINT NUMBER 19 | S.A. COMPRESE FLEMENT PPF | S.A. COMPRESSOR OUTPUT DATA
FLEMENT PERFORMANCE RESULTS
READING NUMBER 39 DA | œ
⊨ | 4/27/1967 | | | |---------------|---|---|--------------------------------------|---------------------------|--|--|-----------|----------------------------|-------------| | RADIAL | RELINLET | INCID ANG | INCID ANG | INLET REL | INLET REL | ROTOR SPD | INLET ABS | INLET ABS | INLET AX | | 201-10 | A0.150 | 3.372 | 86E.E. | .0420 | 1661.462 | 1468.060 | 777.981 | 0.731 | 775.583 | | ٠, ٠ | 59.657 | 4.257 | -0.483 | 1,4524 | 1541,414 | 1330,218 | 778.767 | 0.734 | 778.648 | | · * 5 | 57.518 | 5.26R | -0.442 | 1.3378 | 1420.945 | 1196.935 | 765.788 | 0.721 | 762.002 | | 4 | 55.740 | 5,530 | -1.040 | 1.2124 | 1289.569 | 1051.412 | 746.673 | 0.702 | 729.672 | | 5 | 54.232 | 5.632 | -1.64R | 1.0139 | 1092.641 | 885.799 | 639.706 | 0.594 | 592.285 | | 2 A 13 I A L | 7. EX. T | REL. DEV. | REI TURN | EXIT REL. | EXIT REL. | ROTOR SPD | EXIT ABS | EXIT ARS | EXIT AX. | | 7011-903 |
10 10 14 10 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16 16 16 16 16 16 16 16 16 16 16 16 16 | 1 L C V | T I I I | MACH | VELOCITY | EXIT | VELOCITY | MACH NO. | VFLOCITY | | | 49.378 | -1. An2 | 13.774 | 0.8893 | 1067,684 | 1451,938 | 965.855 | 0.804 | 708.408 | | · ^ | 47,173 | 2,143 | 12,484 | D. A252 | 978,539 | 1330.978 | 904.799 | 0.763 | 665,184 | | , - ~ | 45.326 | 9.156 | 12.192 | 0.6387 | 760.145 | 1211.622 | 858.399 | 0.721 | 534.076 | | 4 | 95,653 | 2.203 | 29.586 | 0.6712 | 780.112 | 1090.663 | 1032.421 | 0.888 | 698.949 | | ın | 14,364 | 10.584 | 39.867 | 0.6860 | 784.995 | 972.066 | 1068.624 | 0.934 | 734.256 | | 0 4 0 1 4 5 | | NOTSUBSTG | ST PRESS | Ę. | SA THE INT | EXIT ABS | IN PR | FXIT REL | AXIAL | | 2011-000 | | FALTOR | RISE COEFF | | TANG. VEL | TANG. VEL | TANG. VEL | TANG. VEL | VFL . RAT I | | | | 0.501 | 0.27122 | 0.3988 | 0 | 654.659 | 1468.060 | 797.278 | 0.913 | | • ~ | | 0.498 | 0.35917 | 0.4641 | • | 613,318 | 1330.218 | 717,660 | 0.854 | |) (~ ? | | 0.609 | 0.41894 | 0.4951 | 0 | 671.437 | 1196.935 | 540.185 | 0.701 | | 4 | | 0.556 | 0.44739 | 0.4761 | | 754.983 | 1051.412 | 335.680 | 0.958 | | ۳. | | 0.451 | n.42680 | 0.3503 | · c | 756.458 | 885.799 | 215.609 | 1.240 | | 9 A D 1 A L | | ADJABATIC | n. | TOT, PRESS | TOT. TEMP | | ABS.INLET | ABS, EXIT | | | P01:1804 | | FFF 10 JENCY | EFF 1C1ENC | PATIO | RAT10 | | FLOW ANG. | FLOW ANG. | | | 1 | | 0.6896 | | 1.048 | 1.304 | | | 42,742 | | | ~ | | 0.7916 | 8608.0 | 1.924 | 1.260 | | 0 | 42.677 | | | 8 | | 0.7142 | n,7368 | 1.804 | 1.257 | | 0. | 51,500 | | | 4 | | 0.4359 | 0.8509 | 1.989 | 1.260 | | 0. | 47.207 | | | 5 | | 0.8659 | 0.8777 | 1.924 | 1.239 | | ċ | 45.853 | | | | TABVERSE PRETABLE POL | PRESSURE RATIO
ADIAHATIC EFF.
POLYTROPIC FFF. | = 1.9227
= n.7694
= n.7895 | FIXEN INSTRUMENTATION | UMENTATION | PRESSURE RATIO
ADIABATIC EFF.
POLYTROPIC FFF | 4 M 44 | 1.8890
0.8138
0.8297 | | | | FLOW COEFFICIENT L.F.
FLOW COEFFICIENT T.E. | CIENT L.F.
Cleut T.F. | - | CHECK | | NOZZLF WEIGHT FLOW
FLOW/NOZ, WEIGHT FLOW | 233.1 | .13
.98826 | | | | PERCENT DESIGN SPEED | SFEED | | I.E. CHECK | MEIGH! FLUW/ | FLUM/NUZ. WEIGHI FL | 1.0 | 2123 | | | TOT, TEMP
RATIO | 1,278 | 1,252 | 1,236 | 1,232 | 1,220 | |--------------------------|--------|--------|--------|--------|--------| | TOT, PRESS
RATIO | 1,882 | 1,920 | 1.808 | 1.901 | 1,930 | | LOSS
COEFFICIENT | 0.2645 | 0,1756 | 0.2157 | 0.1451 | 0.0861 | | ADIABATIC
EFFICIENCY | 0,7120 | 0,8149 | 0.7802 | 0.8702 | 0.9386 | | TOT. PRESS
LOSS PARAM | 0.0645 | 0.0399 | 0.0460 | 0.0354 | 0.0193 | | RADIAL
POSITION | 1 | 2 | ٣ | 7 | ٠,- | Table 6. - Listing of Blade Element Performance (continued). N.A.S.A. COMPRESSOR OUTPUT DATA BLADE ELEMENT PERFORMANCE RESULTS POINT NUMBER 20 READING NUMBER 40 DATE '4/27/1967 | INLET AX. | | | | | | 583,896 | EXIT AX. | ×1100 | 703,706 | 658,180 | 531,591 | 704,426 | 732.453 | AX I AL | VFL.RAT10 | 906'0 | 0.845 | 0.705 | 0.984 | 1.254 | | | | | | | | | | |---------------|------------|-----------|----------|----------|----------|----------|-----------|-----------------|------------|----------|----------|----------|----------|-----------|------------|----------|----------|------------|----------|---------|-------------|--------------|--------|--------|--------|--------|--------|--|----------------------| | INLET ABS | MACH NO. | 0.732 | 0.734 | 0.713 | 0.688 | 0.584 | EXIT ABS | 2 | 0.805 | 0.764 | 0.725 | 0.896 | 0.937 | EXIT REL | TANG.VFL | 783,335 | 704.662 | 530.150 | 328.0A5 | 207.190 | ABS.EXIT | FLOW ANG. | 43.489 | 43.534 | 52.007 | 47.240 | 46.214 | 1.908
0.8128
0.8290
2.99 | .02609 | | INLET ABS | VELOCITY | . 779.279 | 779.062 | 758.051 | 732.580 | 630.646 | FX1T ABS | × 1 0 0 1 1 1 1 | 971.193 | 907.893 | 864.029 | 1041.148 | 1072.787 | INLET REL | TANG, VFL | 1466.971 | 1329.232 | 1196.047 | 1050.632 | 885.143 | ABS, INLET | FLOW ANG. | .0 | ·
• | 0. | ٠. | ٥. | M;
Cs
- 11 11 11 11 11
- 32 | . 11 | |
ROTOR SPD | AT INLET | 1466.971 | 1329.232 | 1196.047 | 1050.632 | 885.143 | ROTOR SPD | F - > U - F - | 1450.861 | 1329,991 | 1210.724 | 1089.854 | 971.346 | EXIT ARS | TANG. VFL | 667.527 | 625,329 | 680.574 | 761.769 | 764.156 | | | | | | | | UMENTATION PPESSURE RATIO
ADIABATIC EFF.
POLYTROPIC FFF.
NOZZLE WEIGHT FLO | JOZ. WEIGHT FL | | INLET REL | VELOCITY | 1661.108 | 1540.713 | 1416.041 | 1280,821 | 1086.826 | EXT PE | | 1054.152 | 964.252 | 751.282 | 781.880 | 780.938 | INLET ARS | TANG, VEL | | | | | ÷. | TOT. TEMP | RATIO | 1.313 | 1.265 | 1.262 | 1.263 | 1.239 | UMENTATION P | WEIGHT FLOW/N | | INLET REI. | MACH NO. | 1,5613 | 1.4517 | 1.3322 | 1.2021 | 1.0071 | FXT | | 0.8743 | 0.8115 | 0.6307 | 0.6729 | 0.6824 | CH 3 | | 0.4097 | 0.4733 | 0.4998 | 9.4717 | 0.3505 | TOT, PRESS | RATIO | 1.980 | 1.946 | 1.824 | 2.009 | 1.943 | S | T.E. CHECK | | INCID ANG | SUCT, SURF | -4.455 | -0.511 | -0.19B | -0.550 | -1.291 | 2001 | | 14 030 | 12.676 | 12.84 | 30 756 | 40.794 | ST, PRESS | RISE COEFF | n. 28080 | 0.36812 | 0.42445 | n.44473 | 0.42889 | PCI YTROPIC | EFFICIENCY | 0.7175 | 0.8089 | 0.7399 | 9.8556 | 0.8863 | 1.0455
0.7714
0.7917
0.980 | 110 | | INCID ANG | MN.CMBR.LN | 3,315 | 4.239 | 5.512 | 6.020 | 5.989 | 7 11 4 | | ANG. 1-17. | 1.02 | 8.75.2 | 1.524 | 10.015 | PIFFUSION | F.A.C.TOR | 0.512 | 0.510 | 0.616 | 0.553 | 0.453 | 2DIARATIC | FFF 1C LENCY | 0.6895 | 5062.0 | 0.7171 | 0.5408 | 0.4752 | PPESSURE RATIO APLANATIC FFF. FICEMULY. | SPEED | | HEL.INLET | FLOW ANG. | 42.095 | 59.629 | 57.762 | 55.730 | 54.589 | # F | | | 26.5.3 | 66.84 | 24 974 | 46.795 | | | | | | | | | | | | | | | TKAVERSE PRESSURE RAT
TAAVERSE ANTAHATIC EF
TRAVERSE POLYTROPIC E
FLOG COEFFICIANT LE | PERCENT DESIGN SPEED | | RADIAL | POSITION | | ۰ ۸ | ; M. | 4 | ī | 0 4 0 | 1 - H | 50111507 | + 0 | . ~ | 9 | ۍ. | RADIAL | POST102 | | ٠, ٨ | ; ~ | - 4 | 5 | RADIAL | VOITISON | | C. | ~ | 4 | ľ | | | | TOT, TEMP
RATIO | 1.285 | 1.257 | 1.241 | 1,235 | 1,222 | |--------------------------|--------|--------|--------|------------|--------| | TOT. PRESS
RATIO | 1.910 | 1.947 | 1.829 | 1,909 | 1,939 | | LOSS
COEFFICIENT | 0.2696 | 0,1766 | 0.2187 | 0,1538 | 0.0885 | | ADIABATIC
EFFICIENCY | 0.7119 | 0.8169 | 0,7813 | 0.8649 | 0.9379 | | TOT. PRESS
LOSS PARAM | 0,0661 | 0.0403 | 0.0469 | 0.0377 | 0.0199 | | RADIAL
POSITION | -1 | 2 | 3 | ~ † | 5 | Table 6. - Listing of Blade Element Performance (continued). N.A.S.A. COMPRESSOR OUTPUT DATA BLADE FLEMENT PERFORMANCE RESULTS POINT NUMHER 21 READING NUMBER 41 DATE 4/27/196 | | INLET AX. | VFLOCITY | 765.516 | 774.731 | 759.861 | 724.643 | 592,311 | FXIT AX. | *T100 137 | 679 707 | 651,917 | 510.170 | 684.188 | 710.887 | AXTAI | VEL RATIO | 0.888 | 0.841 | 0.683 | 0.944 | 1.200 | | | | | | | | | | | |---------------|------------|--------------|----------|----------|----------|----------|----------|-----------|-----------|----------|----------|------------|----------|----------|-----------|------------|----------|----------|----------|----------|---------|---------------|--------------|--------|--------|--------|---------|--------|----------------------------------|----------------------------------|---| | | INLET ABS | MACH NO. | 0.720 | 0.730 | 0,719 | 0.697 | 0.594 | EXTT ABS | Z TOVE | 0.803 | 0,769 | 0.722 | 468.0 | 0.916 | EXIT REL | TANG. VEL | 757.413 | 688.777 | 524.848 | 325,360 | 215.313 | A 1 A 2 3 G 7 | FI OW ANG. | 45.624 | 44.576 | 52.917 | 48.207 | 46.794 | 320
131 | 296
6 | 0.98889
1.01407 | | 4/27/1967 | INLET ARS | VELOCITY | 767.884 | 774.849 | 763.637 | 741.526 | 639.734 | EXIT ABS | VELOCITY | 973.061 | 915.225 | 861.468 | 1030.069 | 1052.083 | IN FR | TANG. VEL | 1468.221 | 1330.364 | 1197.066 | 1051.527 | 885.896 | TO WE OUT | FLOW ANG. | • | 0 | · c | 0. | 0. | | | U H | | DATE 4/27, | ROTOR SPI | AIINLFT | 1468.221 | 1330.364 | 1197.066 | 1051.527 | 885.896 | ROTOR SPD | AT EXIT | 1452.097 | 1331,124 | 1211,755 | 1090.782 | 972.173 | EXIT APS | TANG, VEL | 694.684 | 642.347 | 686.907 | 765.422 | 756.860 | | | | | | | | PRESSURE RATIO
ADIABATIC EFF. | OLYTROPIC EFF.
Ozzle Weight F | FLOW/NOZ. WEIGHT FLOW FLOW/NOZ. WEIGHT FLOW | | NUMBER 41 | INCET REL | VELUCITY | 1656.900 | 1539.565 | 1419,897 | 1286.690 | 1092.736 | EXIT REL. | VELOCITY | 1018,791 | 948.389 | 738.751 | 762.253 | 761.841 | INLET ARS | TANG. VEL | ٥. | 0. | | | 0. | TOT TEMP | RATIO | 1.323 | 1.272 | 1.264 | 1.265 | 1.241 | | άŽ | WEIGHT FLOW/N | | I READING | INLET REL | APCIL SO. | 1.555 | 1.4495 | 1,3361 | 1.2087 | 1.0141 | EXIT REL. | MACH NO. | 0.8408 | 9.7964 | 0.6190 | 0.6539 | 0.6633 | Сн1 | | 0.4147 | 0.4830 | 0.5189 | 0.5036 | 0.3981 | TOT PRESS | RATIO | 2,000 | 1,983 | 1.852 | 2,032 | 1.951 | FIXED INSTRUMENTATION | | L.E. CHECK
T.E. CHECK | | INT NUMBER 21 | INCID ANG | 3.00.13.00 | /w0.n- | -0.354 | -n.366 | -0.852 | -1.647 | REL. TURN | ANGLF | 14.368 | 13.211 | 12.283 | 26.66 | 39.383 | ST, PRESS | RISE COEFF | n.28591 | 0.37773 | 0.44316 | n.47597 | п.47451 | PCI YTROPIC | EFFICIENCY | n.7084 | 9.8129 | 0.7525 | n.8612 | ი.8859 | = 1.969n
= 0.7724 | = 0.7929
= n.980 | = 0.950
= 110 | | 104 | TNCTP ANG | 21. KAII. ME | SX0.0 | 4.396 | 5.344 | 5.718 | 5,633 | PFL. DEV. | ANG. T.F. | -2.085 | 1.545 | 9.141 | 1.983 | 11.070 | PIFFUSION | FACTOR | 0.538 | 0.524 | 0.627 | 0.571 | 0.472 | ADIARATIC | FFF 1 C1ENCY | 0.6790 | 0.7942 | 0.7303 | 0. x46A | 0.8747 | | !
! | | | | MFT. INLET | SINE STATE | 00.00 | . / S.A. | 57.594 | 55.428 | 56,233 | MFL. FXIT | FIDS ANG. | 44.095 | 44.575 | 45.311 | 25.433 | 14.850 | | | | | | | | | | | | | | | THAVERSE PPE | PLOW CCEPFICIENT L.E. | FLCW CCEFFICIENT
PERCENT DESIGN SPEED | | | RADIAL | | | ~ | ~ | 4 | 'n | RADIAL | FOSITION | | ~ |
~) | 4 | ĸ | HADIAL | POSITION | | ~ | m | 4 | ľ | RADIAL | POSITION | 1 | ~ | 8 | 4 | 2 | | | | | TOT, TEMP
RATIO | 1,293 | 1,263 | 1,246 | 1,238 | 1,224 | |--------------------------|--------|--------|--------|--------|--------| | TOT. PRESS
RATIO | 1.943 | 1,981 | 1.855 | 1,922 | 1,950 | | LOSS
COEFFICIENT | 0.2756 | 0.1776 | 0.2199 | 0.1556 | 0.0895 | | ADIABATIC
EFFICIENCY | 0.7125 | 0.8196 | 0.7833 | 0.8638 | 0.9372 | | TOT. PRESS
LOSS PARAM | 0.0675 | 0.0409 | 0.0469 | 0.0380 | 0.0200 | | RADIAL
POSITION | | 2 | 3 | 7 | 5 | Figure 1(a). - Partial view of Rotor 2D. Figure 1(b). - Close-up view of tip section of Rotor 2D. Figure 2. - Meridional view of rotor. Probograph inspection sections are indicated by asterisks. Figure 3(a). - Cylindrical cut of blade at section KK. The solid line represents design intent and the dashed line represents the average of six measured samples. Figure 3(b). - Cylindrical cut of blade at section JJ. The solid line represents design intent and the dashed line represents the average of six measured samples. Figure 3(c). - Cylindrical cut of blade at section HH. The solid line represents design intent and the dashed line represents the average of six measured samples. Figure 3(d). - Cylindrical cut of blade at section GG. The solid line represents design intent and the dashed line represents the average of six measured samples. Figure 3(e). - Cylindrical cut of blade at section EE. The solid line represents design intent and the dashed line represents the average of six measured samples. Figure 3(f). - Cylindrical cut of blade at section CC. The solid line represents design intent and the dashed line represents the average of six measured samples. Figure 4. - House Compressor Test Facility. Figure 5. - Meridional view showing location of instrumentation. Figure 6. - Development showing circumferential location of instrumentation. (a). - Inlet pitot-static rake. (b). - Casing boundary layer rake. Figure 7. - Photographs of fixed instrumentation. (c). Discharge total temperature rake. (d). Discharge total pressure rake. Figure 7. - Photographs of fixed instrumentation. (a). - Shielded hot wire probe. (b). - Cobra probe for sensing flow angle, total pressure and total temperature. (c). - Wedge probe for sensing static pressure. Figure 8. - Photographs of traverse instrumentation. Figure 9. - Rotor performance map. 72 #### **Immersion** (a) Sample of hot wire anemometer traces at 90 percent design rotor speed. (b) Sample of hot wire anemometer traces from 10 percent immersion at 90 percent design rotor speed. | Rotor speed,
percent design | Number of stall cells | Stall cell speed
Rotor speed | Radial extent of stall cell | Throttle setting
at stall | |--------------------------------|-----------------------|---------------------------------|-----------------------------|------------------------------| | 50 | 2 | . 68 | Full span | 4. 10 | | 70 | 3 | . 69 | Full span | 5. 45 | | 90 | 1 | . 59 | Full span | 8. 4 5 | | 100 | 1 | . 61 | Full span | 10. 10 | | 110 | 1 | . 61 | Full span | 10, 70 | #### (c) Tabulation of stall data Figure 10. - Sample hot-wire traces and tabulation of stall data. Meridional Mach number , M_m Figure 11. - Relationship between flow function and meridional Mach number - used for transferring traverse measurements to blade edges. Dashed lines with arrows and inset formulas indicate calculation sequence for sample case at leading edge. Figure 12(a). - Blade element data measured at 10% immersion from tip. Figure 12(b). - Blade element data measured at 30% immersion from tip. Figure 12(c). - Blade element data measured at 50% immersion from tip. Figure 12(d). - Blade element data measured at 70% immersion from tip.